login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A002128
MacMahon's generalized sum of divisors function.
(Formerly M2784 N1119)
5
1, 3, 9, 22, 42, 81, 140, 231, 351, 551, 783, 1134, 1546, 2142, 2835, 3758, 4818, 6237, 7826, 9885, 12159, 14974, 18261, 22113, 26511, 31668, 37611, 44149, 52074, 60660, 70569, 81396, 94311, 107317, 123879, 140049, 160154, 179949, 204867, 228137
OFFSET
6,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. E. Andrews and S. C. F. Rose, MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, arXiv:1010.5769 [math.NT], 2010.
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113; Coll. Papers II, pp. 303-341.
FORMULA
G.f.: (t(1)^3-3*t(1)*t(2)+2*t(3))/6 where t(i) = Sum(x^(n*i)/(1-x^n)^(2*i),n=1..inf), i=1..3. - Vladeta Jovovic, Sep 21 2007
G.f.: (Sum_{k>=0} (-1)^k * (2*k + 1) * binomial( k+3, 6) * x^( k*(k+1) / 2 )) / (-7 * Sum_{k>=0} (-1)^k * (2*k + 1) * x^( k*(k+1) / 2 )). - Michael Somos, Jan 10 2012
EXAMPLE
x^6 + 3*x^7 + 9*x^8 + 22*x^9 + 42*x^10 + 81*x^11 + 140*x^12 + 231*x^13 + ...
PROG
(PARI) {a(n) = if( n<1, 0, (3*sigma(n, 5) + (-30*n + 50)*sigma(n, 3) + (40*n^2 - 100*n + 37)*sigma(n)) / 1920)} /* Michael Somos, Jan 10 2012 */
CROSSREFS
A diagonal of A060043.
Sequence in context: A318807 A063586 A131477 * A379177 A373170 A064808
KEYWORD
nonn,easy
EXTENSIONS
More terms from Naohiro Nomoto, Jan 24 2002
More terms from Vladeta Jovovic, Sep 21 2007
STATUS
approved