OFFSET
1,2
COMMENTS
Let s be the sum of the squarefree divisors of a number m. The sequence lists the numbers m such that s and sigma(m) - s are both a perfect square.
The corresponding pairs of squares (s, sigma(m) - s) are (1, 0), (4, 0), (4, 9), (36, 0), (4, 36), (144, 0), (144, 0), (36, 144), (144, 0), (144, 0), (144, 0), (324, 0), (144, 324), ...
The subsequence b(n) where s and sigma(m) - s are strictly positive begins with 9, 27, 88, 198, 264, 280, 376, 594, 630, ... b(n) is not squarefree (subsequence of A013929).
The subsequence c(n) where the ratio r = (sigma(a(n)) - s)/s is integer begins with 27, 88, 264, 280, 376, 594, 680, 840, 856, 1128, 1240, ... and the corresponding r are 3^2, 2^2, 2^2, 2^2, 2^2, 3^2, 2^2, 2^2, 2^2, 2^2, 2^2, 2^2, 2^2, 5^2, 3^2, 2^2, 7^2, 3^2, 2^2, 11^2, ... It is conjectured that r belongs to A001248.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
MAPLE
filter:= proc(n) local F, SF, NSF, t;
F:= ifactors(n)[2];
SF:= mul(1+t[1], t=F);
if not issqr(SF) then return false fi;
NSF:= mul((1-t[1]^(1+t[2]))/(1-t[1]), t=F) - SF;
issqr(NSF);
end proc:
select(filter, [$1..2000]); # Robert Israel, Sep 05 2018
MATHEMATICA
lst={}; Do[If[IntegerQ[Sqrt[Total[Select[Divisors[n], SquareFreeQ]]]]&&IntegerQ[Sqrt[DivisorSigma[1, n]-Total[Select[Divisors[n], SquareFreeQ]]]], AppendTo[lst, n]], {n, 1100}]; lst
sdsndQ[n_]:=Module[{d=Divisors[n], sf, nsf}, sf=Select[d, SquareFreeQ]; nsf= Complement[ d, sf]; AllTrue[ {Sqrt[ Total[sf]], Sqrt[ Total[nsf]]}, IntegerQ]]; Select[Range[1500], sdsndQ] (* Harvey P. Dale, Sep 13 2024 *)
PROG
(PARI) isok(n) = {my(sd=sumdiv(n, d, issquarefree(d)*d)); issquare(sd) && issquare(sigma(n) - sd); } \\ Michel Marcus, Sep 04 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 04 2018
EXTENSIONS
Definition modified by Harvey P. Dale, Sep 13 2024
STATUS
approved