OFFSET
1,8
COMMENTS
This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A necklace is a finite sequence that is minimal among its cyclic permutations.
a(1) = 1 by convention.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
FORMULA
a(p) = 1 for prime p. - Andrew Howroyd, Dec 08 2018
EXAMPLE
The a(21) = 3 necklace permutations of {1,1,1,1,2,2} are: (111122), (111212), (112112). Only the first two are Lyndon words, the third being periodic.
MATHEMATICA
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]], {#1}]&, If[n==1, {}, Flatten[Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]]]];
neckQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And];
Table[Length[Select[Permutations[nrmptn[n]], neckQ]], {n, 2, 100}]
PROG
(PARI) sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
count(sig)={my(n=vecsum(sig)); sumdiv(gcd(sig), d, eulerphi(d)*(n/d)!/prod(i=1, #sig, (sig[i]/d)!))/n}
a(n)={if(n==1, 1, count(sig(n)))} \\ Andrew Howroyd, Dec 08 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 04 2018
EXTENSIONS
a(1) inserted by Andrew Howroyd, Dec 08 2018
STATUS
approved