OFFSET
2,29
LINKS
Alois P. Heinz, Table of n, a(n) for n = 2..20000
EXAMPLE
The a(90) = 3 Lyndon permutations are {2,3,3,5}, {2,3,5,3}, {2,5,3,3}.
MAPLE
with(combinat): with(numtheory):
g:= l-> (n-> `if`(n=0, 1, add(mobius(j)*multinomial(n/j,
(l/j)[]), j=divisors(igcd(l[])))/n))(add(i, i=l)):
a:= n-> g(map(i-> i[2], ifactors(n)[2])):
seq(a(n), n=2..150); # Alois P. Heinz, Feb 09 2018
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
LyndonQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And]&&Array[RotateRight[q, #]&, Length[q], 1, UnsameQ];
Table[Length[Select[Permutations[primeMS[n]], LyndonQ]], {n, 2, 60}]
(* Second program: *)
multinomial[n_, k_List] := n!/Times @@ (k!);
g[l_] := With[{n = Total[l]}, If[n == 0, 1, Sum[MoebiusMu[j] multinomial[ n/j, l/j], {j, Divisors[GCD @@ l]}]/n]];
a[n_] := g[FactorInteger[n][[All, 2]]];
a /@ Range[2, 150] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 29 2018
STATUS
approved