The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298941 Number of permutations of the multiset of prime factors of n > 1 that are Lyndon words. 6
 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 3, 1, 1, 1, 1, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,29 LINKS Alois P. Heinz, Table of n, a(n) for n = 2..20000 EXAMPLE The a(90) = 3 Lyndon permutations are {2,3,3,5}, {2,3,5,3}, {2,5,3,3}. MAPLE with(combinat): with(numtheory): g:= l-> (n-> `if`(n=0, 1, add(mobius(j)*multinomial(n/j,         (l/j)[]), j=divisors(igcd(l[])))/n))(add(i, i=l)): a:= n-> g(map(i-> i[2], ifactors(n)[2])): seq(a(n), n=2..150);  # Alois P. Heinz, Feb 09 2018 MATHEMATICA primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]; LyndonQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And]&&Array[RotateRight[q, #]&, Length[q], 1, UnsameQ]; Table[Length[Select[Permutations[primeMS[n]], LyndonQ]], {n, 2, 60}] CROSSREFS Cf. A000740, A001037, A001222, A008480, A008965, A059966, A060223, A096443, A112798, A215366, A275024, A294859, A298947. Sequence in context: A203947 A081396 A194293 * A317146 A194297 A100544 Adjacent sequences:  A298938 A298939 A298940 * A298942 A298943 A298944 KEYWORD nonn AUTHOR Gus Wiseman, Jan 29 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 30 16:16 EDT 2020. Contains 333127 sequences. (Running on oeis4.)