login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298941
Number of permutations of the multiset of prime factors of n > 1 that are Lyndon words.
7
1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 3, 1, 1, 1, 1, 1, 3
OFFSET
2,29
LINKS
EXAMPLE
The a(90) = 3 Lyndon permutations are {2,3,3,5}, {2,3,5,3}, {2,5,3,3}.
MAPLE
with(combinat): with(numtheory):
g:= l-> (n-> `if`(n=0, 1, add(mobius(j)*multinomial(n/j,
(l/j)[]), j=divisors(igcd(l[])))/n))(add(i, i=l)):
a:= n-> g(map(i-> i[2], ifactors(n)[2])):
seq(a(n), n=2..150); # Alois P. Heinz, Feb 09 2018
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
LyndonQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And]&&Array[RotateRight[q, #]&, Length[q], 1, UnsameQ];
Table[Length[Select[Permutations[primeMS[n]], LyndonQ]], {n, 2, 60}]
(* Second program: *)
multinomial[n_, k_List] := n!/Times @@ (k!);
g[l_] := With[{n = Total[l]}, If[n == 0, 1, Sum[MoebiusMu[j] multinomial[ n/j, l/j], {j, Divisors[GCD @@ l]}]/n]];
a[n_] := g[FactorInteger[n][[All, 2]]];
a /@ Range[2, 150] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 29 2018
STATUS
approved