login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353468
Dirichlet inverse of A353467.
4
1, 1, -1, -1, 1, 1, -1, 2, 2, -1, 1, -3, -1, 1, -3, -5, 1, -1, -1, 3, 3, -1, 1, 10, -1, 1, -5, -3, -1, 1, 1, 14, -3, -1, 1, 0, -1, 1, 3, -10, 1, -1, -1, 3, 10, -1, 1, -35, 2, 2, -3, -3, -1, 2, -1, 10, 3, 1, 1, 3, -1, -1, -10, -42, 1, 1, 1, 3, -3, -3, -1, 10, 1, 1, 0, -3, -3, -1, -1, 35, 14, -1, 1, -3, -1, 1, 3, -10
OFFSET
1,8
FORMULA
a(1) = 1, for n > 1, a(n) = -Sum_{d|n, d<n} A353467(n/d) * a(d).
a(n) = A353467(A252463(n)).
For all n >= 1, a(A000040(n)) = ((-1)^(n-1)).
PROG
(PARI)
A252463(n) = if(!(n%2), n/2, my(f=factor(n)); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f));
memoA353467 = Map();
A353467(n) = if(1==n, 1, my(v); if(mapisdefined(memoA353467, n, &v), v, v = -sumdiv(n, d, if(d<n, A353467(A252463(n/d))*A353467(d), 0)); mapput(memoA353467, n, v); (v)));
CROSSREFS
Cf. A000040, A252463, A353467 [Dirichlet inverse], A353469 [sum with it].
Cf. also A353458.
Sequence in context: A318810 A319989 A338117 * A184305 A337279 A157522
KEYWORD
sign
AUTHOR
Antti Karttunen, Apr 21 2022
STATUS
approved