login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252463
Hybrid shift: a(1) = 1, a(2n) = n, a(2n+1) = A064989(2n+1); shift the even numbers one bit right, shift the prime factorization of odd numbers one step towards smaller primes.
82
1, 1, 2, 2, 3, 3, 5, 4, 4, 5, 7, 6, 11, 7, 6, 8, 13, 9, 17, 10, 10, 11, 19, 12, 9, 13, 8, 14, 23, 15, 29, 16, 14, 17, 15, 18, 31, 19, 22, 20, 37, 21, 41, 22, 12, 23, 43, 24, 25, 25, 26, 26, 47, 27, 21, 28, 34, 29, 53, 30, 59, 31, 20, 32, 33, 33, 61, 34, 38, 35, 67, 36, 71, 37, 18, 38, 35, 39, 73, 40, 16
OFFSET
1,3
COMMENTS
For any node n >= 2 in binary trees A005940 and A163511, a(n) gives the parent node of n. (Here we assume that their initial root 1 is its own parent).
LINKS
FORMULA
a(1) = 1, a(2n) = n, a(2n+1) = A064989(2n+1).
Other identities. For all n >= 1:
a(2n-1) = A064216(n).
A001222(a(n)) = A001222(n) - (1 - A000035(n)).
Above means: if n is odd, A001222(a(n)) = A001222(n) and if n is even, A001222(a(n)) = A001222(n) - 1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/8 + (1/2) * Product_{p prime > 2} ((p^2-p)/(p^2-q(p))) = 0.2905279467..., where q(p) = prevprime(p) (A151799). - Amiram Eldar, Jan 21 2023
MATHEMATICA
Table[Which[n == 1, 1, EvenQ@ n, n/2, True, Times @@ Power[
Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n], {n, 81}] (* Michael De Vlieger, Sep 16 2017 *)
PROG
(Scheme) (define (A252463 n) (cond ((<= n 1) n) ((even? n) (/ n 2)) (else (A064989 n))))
(Python)
from sympy import factorint, prevprime
from operator import mul
def a064989(n):
f = factorint(n)
return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
def a(n): return 1 if n==1 else n//2 if n%2==0 else a064989(n)
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Sep 15 2017
(PARI) a064989(n) = factorback(Mat(apply(t->[max(precprime(t[1]-1), 1), t[2]], Vec(factor(n)~))~)); \\ A064989
a(n) = if (n==1, 1, if (n%2, a064989(n), n/2)); \\ Michel Marcus, Oct 13 2021
CROSSREFS
A252464 gives the number of iterations needed to reach 1 from n.
Bisections: A000027 and A064216.
Sequence in context: A214288 A332825 A253554 * A332893 A113605 A369984
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Dec 20 2014
STATUS
approved