login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151799
Version 2 of the "previous prime" function: largest prime < n.
127
2, 3, 3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 29, 29, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 41, 41, 43, 43, 43, 43, 47, 47, 47, 47, 47, 47, 53, 53, 53, 53, 53, 53, 59, 59, 61, 61, 61, 61, 61, 61, 67, 67, 67, 67, 71, 71, 73, 73, 73, 73
OFFSET
3,1
COMMENTS
Version 1 of the "previous prime" function is "largest prime <= n". This produces A007917, the same sequence of numerical values, except the offset (or indexing) starts at 2 instead of 3.
Maple's "prevprime" function uses version 2.
See A007917 for references and further information.
LINKS
FORMULA
a(n) = A000040(A000720(n-1)). - Enrique Pérez Herrero, Jul 23 2011
a(n) = n + 1 - Sum_{k=1..n}( floor(k!^(n-1)/(n-1)!)-floor((k!^(n-1)-1)/(n-1)!) ). - Anthony Browne, May 17 2016
a(n) = A060265(floor(n/2)) for n >= 4. - Georg Fischer, Nov 29 2022
MAPLE
A151799:=n->prevprime(n): seq(A151799(n), n=3..100);
MATHEMATICA
Table[NextPrime[n, -1], {n, 3, 77}] (* Jean-François Alcover, May 27 2011 *)
PROG
(Maxima) makelist(prev_prime(n), n, 3, 79); /* Bruno Berselli, May 20 2011 */
(Haskell)
a151799 = a007917 . (subtract 1) -- Reinhard Zumkeller, Jul 26 2012
(PARI) a(n)=precprime(n-1) \\ Charles R Greathouse IV, Jul 12 2016
(Python)
from sympy import prevprime
def A151799(n):
return prevprime(n) # Chai Wah Wu, Feb 28 2018
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jun 29 2009
STATUS
approved