login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151798 a(0)=1, a(1)=2, a(n)=4 for n>=2. 6
1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
A010709 preceded by 1, 2.
Partial sums give A131098.
The INVERT transform gives A077996 without A077996(0). The Motzkin transform gives A105696 without A105696(0). Decimal expansion of 28/225=0.12444... . - R. J. Mathar, Jun 29 2009
Continued fraction expansion of 1 + sqrt(1/5). - Arkadiusz Wesolowski, Mar 30 2012
The number of solutions x (mod 2^(n+1)) of x^2 = 1 (mod 2^(n+1)), namely x = 1 (n=0), x = -1, 1 (n=1) and x = -1, 1, 2^n-1, 2^n+1 (n at least 2). - Christopher J. Smyth, May 15 2014
Also, the number of n-step self-avoiding walks on the L-lattice with no non-contiguous adjacencies (see A322419 for details of L-lattice). - Sean A. Irvine, Jul 29 2020
LINKS
David Applegate, The movie version
FORMULA
G.f.: (1+x+2*x^2)/(1-x).
E.g.f. A(x)=x*B(x) satisfies the differential equation B'(x)=1+x+x^2+B(x). - Vladimir Kruchinin, Jan 19 2011
E.g.f.: 4*exp(x) - 2*x - 3. - Elmo R. Oliveira, Aug 06 2024
MATHEMATICA
f[n_] := Fold[#2*Floor[#1/#2 + 1/2] &, n, Reverse@ Range[n - 1]]; Array[f, 55]
PROG
(Magma) [ n le 1 select n+1 else 4: n in [0..104] ];
(PARI) Vec((1+x+2*x^2)/(1-x) + O(x^100)) \\ Altug Alkan, Jan 19 2016
CROSSREFS
Sequence in context: A345438 A203638 A040002 * A334897 A035684 A049111
KEYWORD
nonn,walk,easy
AUTHOR
David Applegate, Jun 29 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 19:48 EDT 2024. Contains 375759 sequences. (Running on oeis4.)