login
A353470
a(n) = 1 if the number of its divisors, tau(n), is divisible by 3, otherwise 0.
4
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = 1 if A010872(A000005(n)) is zero, otherwise 0.
For all n >= 1, a(n) >= A302048(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - zeta(3)/zeta(2) = 0.2692370305... . - Amiram Eldar, Jul 24 2022
MATHEMATICA
a[n_] := If[Divisible[DivisorSigma[0, n], 3], 1, 0]; Array[a, 100] (* Amiram Eldar, Jul 24 2022 *)
PROG
(PARI) A353470(n) = !(numdiv(n)%3);
CROSSREFS
Characteristic function of A059269.
Sequence in context: A221151 A359474 A359429 * A342753 A358752 A368913
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 21 2022
STATUS
approved