login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359474
a(n) = 1 if the product of exponents in the prime factorization of n is 2, otherwise 0.
6
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1
OFFSET
1
COMMENTS
a(n) = 1 if there is exactly one exponent in the prime factorization of n that is larger than 1, and that exponent is 2, otherwise 0.
FORMULA
a(n) = [A005361(n) == 2], where [ ] is the Iverson bracket.
a(n) = [A000688(n) == 2].
a(n) = [A046660(n) == 1].
a(n) = A359471(n) - A008966(n).
a(n) = A302048(n) + A359475(n).
a(n) = A359429(n) * A359466(n).
Sum_{k=1..n} a(k) ~ c * n, where c = A271971. - Amiram Eldar, Jan 05 2023
MATHEMATICA
a[n_] := If[PrimeOmega[n] - PrimeNu[n] == 1, 1, 0]; Array[a, 100] (* Amiram Eldar, Jan 05 2023 *)
PROG
(PARI) A359474(n) = (2==factorback(factor(n)[, 2])); \\ From the "is" function given in A048109
CROSSREFS
Characteristic function of A060687.
Sequence in context: A295308 A284954 A221151 * A359429 A353470 A342753
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 04 2023
STATUS
approved