login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359471
a(n) = 1 if the product of exponents in the prime factorization of n is less than 3, otherwise 0.
5
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1
OFFSET
1
COMMENTS
a(n) = 1 if there are more unitary divisors of n (A034444) than non-unitary divisors of n (A048105), otherwise 0.
FORMULA
a(n) = [A005361(n) < 3], where [ ] is the Iverson bracket.
a(n) = [A046660(n) < 2].
a(n) = [A048106(n) > 0].
a(n) = [A359431(n) == 0] = [A325973(n) == A326043(n)].
a(n) = A008966(n) + A359474(n).
a(n) >= A359475(n).
Sum_{k=1..n} a(k) ~ c * n, where c = A059956 + A271971 = 0.8086828238... . - Amiram Eldar, Jan 05 2023
MATHEMATICA
a[n_] := If[2^(1 + PrimeNu[n]) > DivisorSigma[0, n], 1, 0]; Array[a, 100] (* Amiram Eldar, Jan 05 2023 *)
PROG
(PARI) A359471(n) = { (1==n) || (factorback(factor(n)[, 2])<3); }; \\ After function "is" given in A048107.
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 04 2023
STATUS
approved