login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115789
a(n) = (floor((n+1)*Pi) - floor(n*Pi)) mod 2.
3
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
OFFSET
0,1
COMMENTS
The arithmetic mean (1/(n+1))*Sum_{k=0..n} a(k) converges to 4 - Pi. What is effectively the same: the Cesaro limit (C1) of a(n) is 4 - Pi.
FORMULA
a(n) = (floor((n+1)*Pi) - floor(n*Pi)) mod 2.
EXAMPLE
a(6)=1 because 7*Pi=21.99..., 6*Pi=18.84... and so a(6) = (21 - 18) mod 2 = 1;
a(7)=0 because 8*Pi=25.13... and so a(7) = (25 - 21) mod 2 = 0.
CROSSREFS
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Jan 31 2006
STATUS
approved