login
A325973
Arithmetic mean of {sum of unitary divisors} and {sum of squarefree divisors}: a(n) = (1/2) * (A034448(n) + A048250(n)).
21
1, 3, 4, 4, 6, 12, 8, 6, 7, 18, 12, 16, 14, 24, 24, 10, 18, 21, 20, 24, 32, 36, 24, 24, 16, 42, 16, 32, 30, 72, 32, 18, 48, 54, 48, 31, 38, 60, 56, 36, 42, 96, 44, 48, 42, 72, 48, 40, 29, 48, 72, 56, 54, 48, 72, 48, 80, 90, 60, 96, 62, 96, 56, 34, 84, 144, 68, 72, 96, 144, 72, 51, 74, 114, 64, 80, 96, 168, 80, 60, 43, 126
OFFSET
1,2
COMMENTS
This is not multiplicative: a(4) = 4, a(9) = 7, but a(36) = 31, not 28. However, the function acts multiplicatively on certain subsequences of natural numbers, like for example when restricted to A048107, where this sequence coincides with A326043.
LINKS
FORMULA
a(n) = (1/2) * (A034448(n) + A048250(n)).
a(n) = A000203(n) - A325974(n).
a(n) = n + A325977(n).
a(A048107(n)) = A326043(A048107(n)).
For n >= 1, a(2^n) = A052548(n-1) = 2^(n-1) + 2.
For n >= 1, a(3^n) = A289521(n) = (3^n + 5)/2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/zeta(3) + 1)/4 = 0.5921081944... . - Amiram Eldar, Feb 22 2024
EXAMPLE
For n = 36, its divisors are 1, 2, 3, 4, 6, 9, 12, 18, 36. Of these, unitary divisors are 1, 4, 9 and 36, so A034448(36) = 1+4+9+36 = 50, while the squarefree divisors are 1, 2, 3 and 6, so A048250(36) = 1+2+3+6 = 12, thus a(36) = (50+12)/2 = 31.
For n = 495, its divisors are 1, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 495. Of these, unitary are 1, 5, 9, 11, 45, 55, 99, 495, whose sum is A034448(495) = 720, while the squarefree divisors are 1, 3, 5, 11, 15, 33, 55, 165, and their sum is A048250(495) = 288. Thus a(495) = (720+288)/2 = 504. Also for 495, whose prime factorization is 3^2 * 5^1 * 11^1 this can be computed faster as the average of ((3^2)+1)*(5+1)*(11+1) and (3+1)*(5+1)*(11+1), thus (1/2)*(3+(3^2)+2)*(5+1)*(11+1) = 504.
MATHEMATICA
Array[(1/2) If[# == 1, 2, Times @@ (1 + Power @@@ #) + Times @@ (1 + #[[;; , 1]]) &@ FactorInteger[#]] &, 90] (* Michael De Vlieger, Jun 06 2019, after Giovanni Resta at A034448 and Amiram Eldar at A048250. *)
PROG
(PARI)
A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1]));
A325973(n) = ((A034448(n)+A048250(n))/2);
(PARI) A325973(n) = (1/2)*sumdiv(n, d, d*(issquarefree(d) + (1==gcd(d, n/d))));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2019
STATUS
approved