The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306633 Decimal expansion of zeta(2)/zeta(3). 6
 1, 3, 6, 8, 4, 3, 2, 7, 7, 7, 6, 2, 0, 2, 0, 5, 8, 7, 5, 7, 3, 6, 7, 6, 5, 8, 5, 3, 9, 8, 4, 7, 9, 1, 9, 4, 1, 1, 3, 0, 8, 1, 3, 9, 1, 4, 6, 5, 2, 4, 1, 3, 9, 2, 2, 0, 7, 7, 3, 5, 3, 1, 9, 2, 7, 6, 8, 3, 4, 4, 9, 7, 9, 7, 8, 7, 6, 0, 1, 9, 4, 2, 2, 8, 2, 2, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equals the asymptotic mean of the unitary abundancy index, lim_{n->oo} (1/n) * Sum{k=1..n} usigma(k)/k, where usigma(k) is the sum of the unitary divisors of k (A034448). LINKS V. Sitaramaiah and M. V. Subbarao, Some asymptotic formulae involving powers of arithmetic functions, Number Theory, Madras 1987, Springer, 1989, pp. 201-234, alternative link. FORMULA Equals A013661/A002117. Equals Sum_{k>=1} phi(k)/k^3, where phi is the Euler totient function (A000010). - Amiram Eldar, Jun 23 2020 Equals Product_{p prime} (1 + 1/(p*(p+1))). - Amiram Eldar, Aug 10 2020 Equals Sum_{k>=1} mu(k)^2/(k*psi(k)) (the sum of reciprocals of the squarefree numbers multiplied by their Dedekind psi function values, A001615). - Amiram Eldar, Aug 18 2020 EXAMPLE 1.3684327776202058757367658539847919411308139146524... MATHEMATICA RealDigits[Zeta[2]/Zeta[3], 10, 100][[1]] PROG (PARI) zeta(2)/zeta(3) \\ Michel Marcus, Mar 04 2019 CROSSREFS Cf. A000010, A001615, A002117, A005117, A013661 (asymptotic mean of sigma(k)/k), A034448, A065463, A322887. Sequence in context: A258232 A296568 A294095 * A096416 A232717 A340794 Adjacent sequences:  A306630 A306631 A306632 * A306634 A306635 A306636 KEYWORD nonn,cons AUTHOR Amiram Eldar, Mar 02 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 18:53 EDT 2021. Contains 343050 sequences. (Running on oeis4.)