login
A258232
Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k) dx.
18
3, 6, 8, 4, 1, 2, 5, 3, 5, 9, 3, 1, 4, 3, 3, 6, 5, 2, 3, 2, 1, 3, 1, 6, 5, 9, 7, 3, 2, 7, 8, 5, 1, 0, 1, 5, 0, 1, 4, 2, 4, 1, 3, 0, 3, 9, 2, 8, 8, 1, 9, 9, 6, 8, 3, 0, 3, 6, 1, 5, 8, 0, 6, 6, 8, 2, 8, 1, 4, 7, 3, 0, 0, 8, 8, 9, 0, 3, 4, 3, 9, 2, 9, 8, 9, 0, 6, 3, 4, 4, 2, 4, 2, 4, 1, 4, 9, 9, 2, 1, 7, 6, 7, 1, 2, 8
OFFSET
0,1
REFERENCES
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 424.
LINKS
Jonathan M. Borwein and Peter B. Borwein, Strange series and high precision fraud, The American Mathematical Monthly, Vol. 99, No. 7 (1992), pp. 622-640; alternative link.
Vaclav Kotesovec, The integration of q-series.
FORMULA
Equals 8*Pi*sqrt(3/23) * sinh(sqrt(23)*Pi/6) / (2*cosh(sqrt(23)*Pi/3) - 1).
From Amiram Eldar, Feb 04 2024: (Start)
Equals 2 * Sum_{k=-oo..oo} (-1)^k/(3*k^2 + k + 2).
Equals Sum_{k>=0} (-1)^A000120(k)/(A029931(k)+1) (Borwein and Borwein, 1992). (End)
EXAMPLE
0.3684125359314336523213165973278510150142413039288199683036158...
MAPLE
evalf(8*sqrt(3/23)*Pi*sinh(sqrt(23)*Pi/6)/(2*cosh(sqrt(23)*Pi/3)-1), 123);
evalf(Sum((-1)^n/((3*n-1)*n/2 + 1), n=-infinity..infinity), 123);
MATHEMATICA
RealDigits[N[8*Sqrt[3/23]*Pi*Sinh[Sqrt[23]*Pi/6] / (2*Cosh[Sqrt[23]*Pi/3]-1), 120]][[1]]
PROG
(PARI) 8*Pi*sqrt(3/23) * sinh(sqrt(23)*Pi/6) / (2*cosh(sqrt(23)*Pi/3) - 1) \\ Michel Marcus, Nov 28 2018
CROSSREFS
Cf. A258406 (m=2), A258407 (m=3), A258404 (m=4), A258405 (m=5).
Sequence in context: A108369 A377041 A010621 * A296568 A294095 A306633
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 24 2015
STATUS
approved