login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258404
Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^4 dx.
6
1, 6, 1, 8, 2, 0, 2, 4, 2, 2, 9, 4, 8, 5, 6, 5, 6, 1, 8, 0, 2, 6, 1, 3, 3, 4, 9, 8, 5, 7, 8, 6, 5, 3, 4, 3, 1, 3, 0, 6, 8, 5, 7, 8, 2, 8, 8, 0, 1, 8, 9, 9, 0, 3, 9, 8, 0, 4, 2, 9, 4, 5, 3, 5, 7, 9, 5, 3, 4, 1, 5, 3, 8, 0, 4, 3, 7, 1, 4, 8, 9, 6, 8, 8, 5, 3, 3, 7, 1, 2, 9, 9, 2, 1, 5, 8, 5, 4, 4, 8, 5, 2, 1, 8, 9, 9
OFFSET
0,2
FORMULA
Sum_{m = -infinity..infinity} (2*Pi*(-1)^m / cosh(sqrt(7 - 4*m + 12*m^2)*Pi/2)). - Vaclav Kotesovec, Dec 04 2015
EXAMPLE
0.16182024229485656180261334985786534313068578288018990398...
MAPLE
evalf(Sum((2*Pi*(-1)^m / cosh(sqrt(7 - 4*m + 12*m^2)*Pi/2)), m=-infinity..infinity), 120); # Vaclav Kotesovec, Dec 04 2015
MATHEMATICA
nmax=200; p=1; q4=Table[PrintTemporary[n]; p=Expand[p*(1-x^n)^4]; Total[CoefficientList[p, x]/Range[1, Exponent[p, x]+1]], {n, 1, nmax}]; q4n=N[q4, 1000]; Table[SequenceLimit[Take[q4n, j]], {j, Length[q4n]-100, Length[q4n], 10}]
NSum[2*(-1)^m*Pi/Cosh[Sqrt[7 - 4*m + 12*m^2]*Pi/2], {m, -Infinity, Infinity}, WorkingPrecision -> 120, NSumTerms -> 100] (* Vaclav Kotesovec, Dec 04 2015 *)
RealDigits[NIntegrate[QPochhammer[x]^4, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 10 2023 *)
PROG
(PARI) default(realprecision, 93);
b(n) = cosh(sqrt(7 - 4*n + 12*n^2)*Pi/2);
2*Pi*(1/b(0) + sumalt(n=1, (-1)^n*(1/b(n) + 1/b(-n)))) \\ Gheorghe Coserea, Sep 26 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 29 2015
EXTENSIONS
More digits from Vaclav Kotesovec, Oct 10 2023
STATUS
approved