login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256853
Decimal expansion of the area of a unit 9-gon.
12
6, 1, 8, 1, 8, 2, 4, 1, 9, 3, 7, 7, 2, 9, 0, 0, 1, 2, 7, 2, 1, 3, 7, 4, 4, 0, 5, 9, 6, 1, 9, 7, 6, 3, 6, 1, 4, 9, 4, 1, 7, 1, 3, 3, 4, 8, 1, 3, 4, 3, 5, 8, 0, 9, 8, 3, 8, 6, 8, 6, 4, 2, 5, 5, 6, 6, 9, 7, 7, 1, 0, 7, 1, 2, 3, 3, 5, 8, 4, 6, 6, 4, 7, 6, 6, 3, 5, 9, 5, 5, 3, 3, 8, 9, 0, 7, 9, 1, 8, 4, 0, 9, 9, 0, 2
OFFSET
1,1
COMMENTS
From Michal Paulovic, May 09 2024: (Start)
This constant multiplied by the square of the side length of a regular enneagon equals the area of that enneagon.
9^2 divided by this constant equals 36 * tan(Pi/9) = 13.10292843... which is the perimeter and the area of an equable enneagon with its side length 4 * tan(Pi/9) = 1.45588093... . (End)
FORMULA
Equals (p/4)*cot(Pi/p), with p = 9.
From Michal Paulovic, May 09 2024: (Start)
Equals 9 * sqrt(2 / (1 - sin(5 * A000796 / 18)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019669 / 9)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019670 / 6)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019673 / 3)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019676 / 2)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(50 * A019685)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * Pi / 18)) - 1) / 4.
Equals 9 * sqrt(4 / (2 - i^(4/9) - i^(-4/9)) - 1) / 4.
Equals 9 * sqrt(1 / (8 - (-32 + sqrt(-3072))^(1/3) - (-32 - sqrt(-3072))^(1/3)) - 1/16). (End)
EXAMPLE
6.181824193772900127213744059619763614941713348134358098386864...
MAPLE
evalf(9 / (4 * tan(Pi/9)), 100); # Michal Paulovic, May 09 2024
MATHEMATICA
RealDigits[(9/4)*Cot[Pi/9], 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
PROG
(PARI) p=9; a=(p/4)*cotan(Pi/p) \\ Use realprecision in excess
CROSSREFS
Cf. A000796, A019669, A019670, A019673, A019676, A019685, A019968, A120011 (p=3), A102771 (p=5), A104956 (p=6), A178817 (p=7), A090488 (p=8), A178816 (p=10), A256854 (p=11), A178809 (p=12).
Sequence in context: A186099 A021622 A073228 * A349905 A258404 A244692
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Apr 12 2015
STATUS
approved