login
A256850
Decimal expansion of the generalized Euler constant gamma(5,5) (negated).
8
2, 0, 6, 4, 4, 4, 4, 4, 9, 5, 0, 6, 5, 1, 3, 5, 0, 2, 7, 9, 8, 8, 4, 9, 4, 4, 8, 6, 2, 8, 7, 5, 7, 0, 4, 1, 6, 9, 6, 6, 8, 8, 4, 0, 3, 6, 6, 5, 7, 1, 8, 8, 2, 4, 6, 2, 1, 3, 7, 6, 1, 3, 1, 3, 1, 7, 8, 6, 2, 2, 5, 2, 1, 8, 5, 9, 9, 8, 6, 1, 8, 7, 3, 8, 6, 3, 7, 3, 6, 2, 9, 6, 0, 2, 8, 6, 5, 7, 2, 2, 5, 7
OFFSET
0,1
LINKS
D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975) p. 134.
FORMULA
Equals (EulerGamma - log(5))/5.
EXAMPLE
-0.20644444950651350279884944862875704169668840366571882462...
MATHEMATICA
RealDigits[EulerGamma/5 - Log[5]/5, 10, 102] // First
PROG
(PARI) default(realprecision, 100); (Euler - log(5))/5 \\ G. C. Greubel, Aug 28 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma(R) - Log(5))/5; // G. C. Greubel, Aug 28 2018
CROSSREFS
Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).
Sequence in context: A291240 A233207 A136656 * A242561 A372767 A131595
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved