login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256782 Decimal expansion of the generalized Euler constant gamma(3,8). 9
0, 8, 4, 3, 1, 9, 6, 8, 8, 4, 3, 3, 1, 6, 2, 9, 5, 5, 9, 3, 9, 0, 4, 0, 3, 5, 6, 8, 0, 3, 7, 5, 4, 8, 0, 0, 1, 2, 8, 1, 2, 4, 3, 7, 3, 8, 2, 5, 9, 1, 7, 0, 6, 8, 5, 2, 3, 0, 3, 0, 3, 9, 9, 9, 3, 8, 7, 7, 8, 8, 1, 6, 6, 3, 2, 4, 9, 5, 4, 3, 5, 1, 9, 7, 6, 3, 9, 7, 8, 7, 3, 1, 6, 0, 2, 9, 5, 3, 3, 2, 0, 1, 0, 1, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975) p. 134.

FORMULA

Equals EulerGamma/8 + 1/8*(Pi/2*(sqrt(2)-1) + log(2) - sqrt(2)*log(sqrt(2)+1)).

EXAMPLE

0.08431968843316295593904035680375480012812437382591706852303...

MATHEMATICA

Join[{0}, RealDigits[-3/8*Log[2] - PolyGamma[3/8]/8, 10, 104] // First]

PROG

(PARI) default(realprecision, 100); Euler/8 + 1/8*(Pi/2*(sqrt(2)-1) + log(2) - sqrt(2)*log(sqrt(2)+1)) \\ G. C. Greubel, Aug 28 2018

(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/8 + (1/8)*(Pi(R)/2*(Sqrt(2)-1) + Log(2) - Sqrt(2)*Log(Sqrt(2)+1)); // G. C. Greubel, Aug 28 2018

CROSSREFS

Cf. A001620 (EulerGamma), A228725 (gamma(1,2)), A256425 (gamma(1,3)), A256778-A256784 (selection of ruler-and-compass constructible gamma(r,k)).

Sequence in context: A337170 A050135 A109595 * A071832 A327121 A091475

Adjacent sequences:  A256779 A256780 A256781 * A256783 A256784 A256785

KEYWORD

nonn,cons,easy

AUTHOR

Jean-Fran├žois Alcover, Apr 10 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 11 06:28 EDT 2021. Contains 343784 sequences. (Running on oeis4.)