login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256784 Decimal expansion of the generalized Euler constant gamma(5,12) (negated). 15
0, 0, 3, 3, 7, 2, 9, 4, 9, 3, 2, 2, 4, 0, 3, 2, 9, 7, 0, 2, 5, 0, 3, 2, 4, 9, 4, 8, 1, 8, 5, 9, 2, 1, 9, 4, 6, 1, 6, 0, 3, 4, 0, 3, 4, 6, 9, 9, 4, 9, 8, 3, 9, 5, 3, 8, 7, 3, 1, 6, 7, 0, 0, 8, 6, 3, 1, 2, 7, 1, 0, 3, 1, 6, 7, 6, 1, 5, 8, 5, 1, 3, 3, 3, 6, 5, 9, 1, 2, 3, 6, 3, 9, 7, 0, 0, 3, 1, 1, 9, 9, 9, 7, 7, 8, 7, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975) p. 134.

FORMULA

Equals EulerGamma/12 + 1/24*(Pi*(2-sqrt(3)) + 2*(sqrt(3)+1)*log(2) + log(3) - 4*sqrt(3) * log(sqrt(3)+1)).

EXAMPLE

-0.0033729493224032970250324948185921946160340346994983953873167...

MATHEMATICA

Join[{0, 0}, RealDigits[-Log[12]/12 - PolyGamma[5/12]/12, 10, 105] // First]

PROG

(PARI) default(realprecision, 100); Euler/12 + 1/24*(Pi*(2-sqrt(3)) + 2*(sqrt(3)+1)*log(2) + log(3) - 4*sqrt(3)*log(sqrt(3)+1)) \\ G. C. Greubel, Aug 27 2018

(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/12 + 1/24*(Pi(R)*(2-Sqrt(3)) + 2*(Sqrt(3)+1)*Log(2) + Log(3) - 4*Sqrt(3)*Log(Sqrt(3)+1)); // G. C. Greubel, Aug 27 2018

CROSSREFS

Cf. A001620 (EulerGamma), A228725 (gamma(1,2)), A256425 (gamma(1,3)), A256778-A256784 (selection of ruler-and-compass constructible gamma(r,k)).

Sequence in context: A101457 A280753 A076217 * A324543 A333339 A089488

Adjacent sequences:  A256781 A256782 A256783 * A256785 A256786 A256787

KEYWORD

nonn,cons,easy

AUTHOR

Jean-François Alcover, Apr 10 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 01:04 EDT 2022. Contains 353847 sequences. (Running on oeis4.)