|
|
A256784
|
|
Decimal expansion of the generalized Euler constant gamma(5,12) (negated).
|
|
15
|
|
|
0, 0, 3, 3, 7, 2, 9, 4, 9, 3, 2, 2, 4, 0, 3, 2, 9, 7, 0, 2, 5, 0, 3, 2, 4, 9, 4, 8, 1, 8, 5, 9, 2, 1, 9, 4, 6, 1, 6, 0, 3, 4, 0, 3, 4, 6, 9, 9, 4, 9, 8, 3, 9, 5, 3, 8, 7, 3, 1, 6, 7, 0, 0, 8, 6, 3, 1, 2, 7, 1, 0, 3, 1, 6, 7, 6, 1, 5, 8, 5, 1, 3, 3, 3, 6, 5, 9, 1, 2, 3, 6, 3, 9, 7, 0, 0, 3, 1, 1, 9, 9, 9, 7, 7, 8, 7, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..10000
D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975) p. 134.
|
|
FORMULA
|
Equals EulerGamma/12 + 1/24*(Pi*(2-sqrt(3)) + 2*(sqrt(3)+1)*log(2) + log(3) - 4*sqrt(3) * log(sqrt(3)+1)).
|
|
EXAMPLE
|
-0.0033729493224032970250324948185921946160340346994983953873167...
|
|
MATHEMATICA
|
Join[{0, 0}, RealDigits[-Log[12]/12 - PolyGamma[5/12]/12, 10, 105] // First]
|
|
PROG
|
(PARI) default(realprecision, 100); Euler/12 + 1/24*(Pi*(2-sqrt(3)) + 2*(sqrt(3)+1)*log(2) + log(3) - 4*sqrt(3)*log(sqrt(3)+1)) \\ G. C. Greubel, Aug 27 2018
(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/12 + 1/24*(Pi(R)*(2-Sqrt(3)) + 2*(Sqrt(3)+1)*Log(2) + Log(3) - 4*Sqrt(3)*Log(Sqrt(3)+1)); // G. C. Greubel, Aug 27 2018
|
|
CROSSREFS
|
Cf. A001620 (EulerGamma), A228725 (gamma(1,2)), A256425 (gamma(1,3)), A256778-A256784 (selection of ruler-and-compass constructible gamma(r,k)).
Sequence in context: A101457 A280753 A076217 * A324543 A333339 A089488
Adjacent sequences: A256781 A256782 A256783 * A256785 A256786 A256787
|
|
KEYWORD
|
nonn,cons,easy
|
|
AUTHOR
|
Jean-François Alcover, Apr 10 2015
|
|
STATUS
|
approved
|
|
|
|