

A016631


Decimal expansion of log(8).


13



2, 0, 7, 9, 4, 4, 1, 5, 4, 1, 6, 7, 9, 8, 3, 5, 9, 2, 8, 2, 5, 1, 6, 9, 6, 3, 6, 4, 3, 7, 4, 5, 2, 9, 7, 0, 4, 2, 2, 6, 5, 0, 0, 4, 0, 3, 0, 8, 0, 7, 6, 5, 7, 6, 2, 3, 6, 2, 0, 4, 0, 0, 2, 8, 4, 8, 0, 1, 8, 0, 8, 6, 5, 9, 0, 9, 0, 8, 4, 1, 4, 6, 8, 1, 7, 5, 8, 9, 9, 8, 0, 9, 8, 9, 2, 5, 6, 0, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n+1) is also the sequence of digits in the baseten expansion of the number representing the probability that an acute triangle could be formed with the pieces obtained by breaking a stick into three parts at random. The breaking points are chosen with uniform distribution and independently of one another.  Eugen J. Ionascu, Feb 19 2011


REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
Bruce C. Berndt, Ramanujan's Notebooks Part I, SpringerVerlag.


LINKS

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].


FORMULA

Equals 2 + Sum_{n >= 1} 1/( n*(16*n^2  1) ). This summation was the first problem submitted by Ramanujan to the Journal of the Indian Mathematical Society. See Berndt, Corollary on p. 29.  Peter Bala, Feb 25 2015
Equals 2 + Sum_{n >= 1} (1)^n*(n1)/(n*(n+1)).  Bruno Berselli, Sep 09 2020
Equals 2 + Sum_{k>=1} zeta(2*k+1)/16^k.  Amiram Eldar, May 27 2021


EXAMPLE

2.079441541679835928251696364374529704226500403080765762362040028480180....


MAPLE

a:=proc(n)
local x, y, z, w;
Digits:=2*n+1;
x:=3*ln(2); y:=floor(10^(n2)*x)*10;
z:=floor(10^(n1)*x); w:=zy;


MATHEMATICA



PROG

(PARI) default(realprecision, 20080); x=log(8); for (n=1, 20000, d=floor(x); x=(xd)*10; write("b016631.txt", n, " ", d)); \\ Harry J. Smith, May 16 2009


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



