OFFSET
0,2
LINKS
Vaclav Kotesovec, The integration of q-series
FORMULA
Sum_{m = -infinity..infinity} (Sum_{h = -infinity..infinity} (2*Pi*(-1)^(h+m) / cosh(sqrt(7 - 4*h + 12*h^2 - 4*m + 12*m^2)*Pi/2))). - Vaclav Kotesovec, Dec 04 2015
EXAMPLE
0.137801070846554642845386131402193843084522541232625982683937003709248631...
MAPLE
evalf(Sum(Sum(2*Pi*(-1)^(h+m) / cosh(sqrt(7 - 4*h + 12*h^2 - 4*m + 12*m^2)*Pi/2), m=-infinity..infinity), h=-infinity..infinity), 120); # Vaclav Kotesovec, Dec 04 2015
MATHEMATICA
nmax=200; p=1; q5=Table[PrintTemporary[n]; p=Expand[p*(1-x^n)^5]; Total[CoefficientList[p, x]/Range[1, Exponent[p, x]+1]], {n, 1, nmax}]; q5n=N[q5, 1000]; Table[SequenceLimit[Take[q5n, j]], {j, Length[q5n]-100, Length[q5n], 10}]
nterms = 40; N[Sum[Sum[2*Pi*(-1)^(h+m) / Cosh[Sqrt[7 - 4*h + 12*h^2 - 4*m + 12*m^2]*Pi/2], {m, -nterms, nterms}], {h, -nterms, nterms}], 100] (* Vaclav Kotesovec, Dec 04 2015 *)
RealDigits[NIntegrate[QPochhammer[x]^5, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 10 2023 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 29 2015
STATUS
approved