OFFSET
0,4
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,-2,-1).
FORMULA
G.f.: (1-x)/(1-2*x+2*x^2+x^3).
a(n) = 2*a(n-1) - 2*a(n-2) - a(n-3). - Wesley Ivan Hurt, Jul 29 2022
MATHEMATICA
LinearRecurrence[{2, -2, -1}, {1, 1, 0}, 40] (* or *) CoefficientList[ Series[(1-x)/(1-2*x+2*x^2+x^3), {x, 0, 40}], x] (* G. C. Greubel, Jun 27 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x)/(1-2*x+2*x^2+x^3)) \\ G. C. Greubel, Jun 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/( 1-2*x+2*x^2+x^3) )); // G. C. Greubel, Jun 27 2019
(Sage) ((1-x)/(1-2*x+2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
(GAP) a:=[1, 1, 0];; for n in [4..40] do a[n]:=2*a[n-1]-2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 27 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved