login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078004
Expansion of (1-x)/(1-2*x+2*x^2+x^3).
3
1, 1, 0, -3, -7, -8, 1, 25, 56, 61, -15, -208, -447, -463, 176, 1725, 3561, 3496, -1855, -14263, -28312, -26243, 18401, 117600, 224641, 195681, -175520, -967043, -1778727, -1447848, 1628801, 7932025, 14054296, 10615741, -14809135, -64904048, -110805567, -76993903, 132527376
OFFSET
0,4
FORMULA
G.f.: (1-x)/(1-2*x+2*x^2+x^3).
a(n) = 2*a(n-1) - 2*a(n-2) - a(n-3). - Wesley Ivan Hurt, Jul 29 2022
MATHEMATICA
LinearRecurrence[{2, -2, -1}, {1, 1, 0}, 40] (* or *) CoefficientList[ Series[(1-x)/(1-2*x+2*x^2+x^3), {x, 0, 40}], x] (* G. C. Greubel, Jun 27 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x)/(1-2*x+2*x^2+x^3)) \\ G. C. Greubel, Jun 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/( 1-2*x+2*x^2+x^3) )); // G. C. Greubel, Jun 27 2019
(Sage) ((1-x)/(1-2*x+2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
(GAP) a:=[1, 1, 0];; for n in [4..40] do a[n]:=2*a[n-1]-2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 27 2019
CROSSREFS
Sequence in context: A316258 A258405 A064208 * A197728 A340315 A267501
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved