login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078006
Expansion of (1-x)/(1-x-2*x^2-2*x^3).
2
1, 0, 2, 4, 8, 20, 44, 100, 228, 516, 1172, 2660, 6036, 13700, 31092, 70564, 160148, 363460, 824884, 1872100, 4248788, 9642756, 21884532, 49667620, 112722196, 255826500, 580606132, 1317703524, 2990568788, 6787188100, 15403732724, 34959246500, 79341088148, 180067046596
OFFSET
0,3
FORMULA
a(0)=1, a(1)=0, a(2)=2, a(n) = a(n-1) + 2*a(n-2) + 2*a(n-3). - Harvey P. Dale, Sep 25 2011
MATHEMATICA
CoefficientList[Series[(1-x)/(1-x-2x^2-2x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 2, 2}, {1, 0, 2}, 41] (* Harvey P. Dale, Sep 25 2011 *)
PROG
(PARI) Vec((1-x)/(1-x-2*x^2-2*x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 27 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/(1-x-2*x^2-2*x^3) )); // G. C. Greubel, Jun 27 2019
(Sage) ((1-x)/(1-x-2*x^2-2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
(GAP) a:=[1, 0, 2];; for n in [4..40] do a[n]:=a[n-1]+2*a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Jun 27 2019
CROSSREFS
Sequence in context: A323019 A105319 A051389 * A288476 A338197 A056952
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved