The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078006 Expansion of (1-x)/(1-x-2*x^2-2*x^3). 1
 1, 0, 2, 4, 8, 20, 44, 100, 228, 516, 1172, 2660, 6036, 13700, 31092, 70564, 160148, 363460, 824884, 1872100, 4248788, 9642756, 21884532, 49667620, 112722196, 255826500, 580606132, 1317703524, 2990568788, 6787188100, 15403732724, 34959246500, 79341088148, 180067046596 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..999 Index entries for linear recurrences with constant coefficients, signature (1, 2, 2). FORMULA a(0)=1, a(1)=0, a(2)=2, a(n) = a(n-1) + 2*a(n-2) + 2*a(n-3). - Harvey P. Dale, Sep 25 2011 MATHEMATICA CoefficientList[Series[(1-x)/(1-x-2x^2-2x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 2, 2}, {1, 0, 2}, 41] (* Harvey P. Dale, Sep 25 2011 *) PROG (PARI) Vec((1-x)/(1-x-2*x^2-2*x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 27 2012 (MAGMA) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/(1-x-2*x^2-2*x^3) )); // G. C. Greubel, Jun 27 2019 (Sage) ((1-x)/(1-x-2*x^2-2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019 (GAP) a:=[1, 0, 2];; for n in [4..40] do a[n]:=a[n-1]+2*a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Jun 27 2019 CROSSREFS Sequence in context: A323019 A105319 A051389 * A288476 A338197 A056952 Adjacent sequences:  A078003 A078004 A078005 * A078007 A078008 A078009 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Nov 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 21:32 EDT 2021. Contains 346455 sequences. (Running on oeis4.)