The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078005 Expansion of (1-x)/(1-2*x+2*x^2+2*x^3). 2
 1, 1, 0, -4, -10, -12, 4, 52, 120, 128, -88, -672, -1424, -1328, 1536, 8576, 16736, 13248, -24128, -108224, -194688, -124672, 356480, 1351680, 2239744, 1063168, -5056512, -16718848, -25451008, -7351296, 69637120, 204878848, 285186048, 21340160, -937449472, -2487951360, -3143684096 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,-2,-2). FORMULA a(n+3) = 2*a(n+2) - 2*a(n+1) - 2*a(n), where a(0)=1, a(1)=1, a(2)=0. - Sergei N. Gladkovskii, Aug 21 2012 MATHEMATICA LinearRecurrence[{2, -2, -2}, {1, 1, 0}, 40] (* or *) CoefficientList[ Series[(1-x)/(1-2*x+2*x^2+2*x^3), {x, 0, 40}], x] (* G. C. Greubel, Jun 27 2019 *) PROG (PARI) my(x='x+O('x^40)); Vec((1-x)/(1-2*x+2*x^2+2*x^3)) \\ G. C. Greubel, Jun 27 2019 (Magma) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/( 1-2*x+2*x^2+2*x^3) )); // G. C. Greubel, Jun 27 2019 (Sage) ((1-x)/(1-2*x+2*x^2+2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019 (GAP) a:=[1, 1, 0];; for n in [4..40] do a[n]:=2*(a[n-1]-a[n-2]-a[n-3]); od; a; # G. C. Greubel, Jun 27 2019 CROSSREFS Sequence in context: A182943 A310339 A090070 * A370859 A355275 A092428 Adjacent sequences: A078002 A078003 A078004 * A078006 A078007 A078008 KEYWORD sign AUTHOR N. J. A. Sloane, Nov 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 22:02 EDT 2024. Contains 374998 sequences. (Running on oeis4.)