login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078005
Expansion of (1-x)/(1-2*x+2*x^2+2*x^3).
2
1, 1, 0, -4, -10, -12, 4, 52, 120, 128, -88, -672, -1424, -1328, 1536, 8576, 16736, 13248, -24128, -108224, -194688, -124672, 356480, 1351680, 2239744, 1063168, -5056512, -16718848, -25451008, -7351296, 69637120, 204878848, 285186048, 21340160, -937449472, -2487951360, -3143684096
OFFSET
0,4
FORMULA
a(n+3) = 2*a(n+2) - 2*a(n+1) - 2*a(n), where a(0)=1, a(1)=1, a(2)=0. - Sergei N. Gladkovskii, Aug 21 2012
MATHEMATICA
LinearRecurrence[{2, -2, -2}, {1, 1, 0}, 40] (* or *) CoefficientList[
Series[(1-x)/(1-2*x+2*x^2+2*x^3), {x, 0, 40}], x] (* G. C. Greubel, Jun 27 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x)/(1-2*x+2*x^2+2*x^3)) \\ G. C. Greubel, Jun 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/( 1-2*x+2*x^2+2*x^3) )); // G. C. Greubel, Jun 27 2019
(Sage) ((1-x)/(1-2*x+2*x^2+2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
(GAP) a:=[1, 1, 0];; for n in [4..40] do a[n]:=2*(a[n-1]-a[n-2]-a[n-3]); od; a; # G. C. Greubel, Jun 27 2019
CROSSREFS
Sequence in context: A182943 A310339 A090070 * A370859 A355275 A092428
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved