login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078002
Expansion of (1-x)/(1-2*x+x^2+2*x^3).
1
1, 1, 1, -1, -5, -11, -15, -9, 19, 77, 153, 191, 75, -347, -1151, -2105, -2365, -323, 5929, 16911, 28539, 28309, -5743, -96873, -244621, -380883, -323399, 223327, 1531819, 3487109, 4995745, 3440743, -5088477, -23609187, -49011383, -64236625, -32243493, 97772405, 356261553, 679237687
OFFSET
0,5
MATHEMATICA
LinearRecurrence[{2, -1, -2}, {1, 1, 1}, 40] (* or *) CoefficientList[ Series[(1-x)/(1-2*x+x^2+2*x^3), {x, 0, 40}], x] (* G. C. Greubel, Jun 27 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x)/(1-2*x+x^2+2*x^3)) \\ G. C. Greubel, Jun 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/( 1-2*x+x^2+2*x^3) )); // G. C. Greubel, Jun 27 2019
(Sage) ((1-x)/(1-2*x+x^2+2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
(GAP) a:=[1, 1, 1];; for n in [4..40] do a[n]:=2*a[n-1]-a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 27 2019
CROSSREFS
Sequence in context: A103011 A137002 A091718 * A171418 A213444 A314002
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved