login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077999
Expansion of (1-x)/(1-2*x-2*x^3).
2
1, 1, 2, 6, 14, 32, 76, 180, 424, 1000, 2360, 5568, 13136, 30992, 73120, 172512, 407008, 960256, 2265536, 5345088, 12610688, 29752448, 70195072, 165611520, 390727936, 921846016, 2174915072, 5131286016, 12106264064, 28562358272, 67387288576, 158987105280
OFFSET
0,3
COMMENTS
a(n) = number of permutations on [n] that avoid nonconsecutive instances of the patterns 321 and 312. For example, a(4) does not count pi=4231 because 431 forms a 321 pattern in pi but 431 is not a consecutive (that is, contiguous) string in pi; also, the first 3 letters form a 312 pattern but that's not disqualifying because they do occur consecutively. Counting these permutations by various statistics yields the listed formulas/recurrences. - David Callan, Oct 26 2006
a(n) = term (1,1) of M^n, M = the 4 X 4 matrix [1,0,1,1; 1,1,0,0; 0,1,0,1; 1,0,0,1]. a(n)/a(n-1) tends to 2.3593040859..., an eigenvalue of the matrix and a root to the characteristic polynomial x^4 - 3x^3 + 2x^2 - 2x + 2. - Gary W. Adamson, Oct 01 2008
LINKS
S. R. Finch, Several Constants Arising in Statistical Mechanics, arXiv:math/9810155 [math.CO], 1998-1999. see p. 8.
FORMULA
a(n) = 2*(a(n-1) + a(n-3)) counts the above permutations by first entry. a(n) = a(n-1) + a(n-2) + 3*Sum_{k=0..n-3} a(k) counts by last entry. a(n) = 2^(n-1) + Sum_{k=0..n-3} 2^(n-2-k)*a(k) counts by location of first 3xx pattern. a(n) = Sum_{k=0..floor(n/3)} ((n-k)/(n-2k))* binomial(n-2*k,k) * 2^(n-2*k-1) counts by number of 3xx patterns. - David Callan, Oct 26 2006
a(n) = A052912(n) - A052912(n-1). - R. J. Mathar, May 30 2014
a(n) = (-1)^n * A110524(n). - G. C. Greubel, Jun 27 2019
MATHEMATICA
CoefficientList[Series[(1-x)/(1-2x-2x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 0, 2}, {1, 1, 2}, 40] (* Harvey P. Dale, Sep 10 2016 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x)/(1-2*x-2*x^3)) \\ G. C. Greubel, Jun 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/( 1-2*x-2*x^3) )); // G. C. Greubel, Jun 27 2019
(Sage) ((1-x)/(1-2*x-2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
(GAP) a:=[1, 1, 2];; for n in [4..40] do a[n]:=2*(a[n-1]+a[n-3]); od; a; # G. C. Greubel, Jun 27 2019
CROSSREFS
Sequence in context: A232230 A294780 A051485 * A110524 A083404 A232497
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved