OFFSET
0,3
COMMENTS
a(n) = number of permutations on [n] that avoid nonconsecutive instances of the patterns 321 and 312. For example, a(4) does not count pi=4231 because 431 forms a 321 pattern in pi but 431 is not a consecutive (that is, contiguous) string in pi; also, the first 3 letters form a 312 pattern but that's not disqualifying because they do occur consecutively. Counting these permutations by various statistics yields the listed formulas/recurrences. - David Callan, Oct 26 2006
a(n) = term (1,1) of M^n, M = the 4 X 4 matrix [1,0,1,1; 1,1,0,0; 0,1,0,1; 1,0,0,1]. a(n)/a(n-1) tends to 2.3593040859..., an eigenvalue of the matrix and a root to the characteristic polynomial x^4 - 3x^3 + 2x^2 - 2x + 2. - Gary W. Adamson, Oct 01 2008
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
S. R. Finch, Several Constants Arising in Statistical Mechanics, arXiv:math/9810155 [math.CO], 1998-1999. see p. 8.
Index entries for linear recurrences with constant coefficients, signature (2,0,2)
FORMULA
a(n) = 2*(a(n-1) + a(n-3)) counts the above permutations by first entry. a(n) = a(n-1) + a(n-2) + 3*Sum_{k=0..n-3} a(k) counts by last entry. a(n) = 2^(n-1) + Sum_{k=0..n-3} 2^(n-2-k)*a(k) counts by location of first 3xx pattern. a(n) = Sum_{k=0..floor(n/3)} ((n-k)/(n-2k))* binomial(n-2*k,k) * 2^(n-2*k-1) counts by number of 3xx patterns. - David Callan, Oct 26 2006
a(n) = (-1)^n * A110524(n). - G. C. Greubel, Jun 27 2019
MATHEMATICA
CoefficientList[Series[(1-x)/(1-2x-2x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 0, 2}, {1, 1, 2}, 40] (* Harvey P. Dale, Sep 10 2016 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x)/(1-2*x-2*x^3)) \\ G. C. Greubel, Jun 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/( 1-2*x-2*x^3) )); // G. C. Greubel, Jun 27 2019
(Sage) ((1-x)/(1-2*x-2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
(GAP) a:=[1, 1, 2];; for n in [4..40] do a[n]:=2*(a[n-1]+a[n-3]); od; a; # G. C. Greubel, Jun 27 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved