login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052912
Expansion of 1/(1-2*x-2*x^3).
10
1, 2, 4, 10, 24, 56, 132, 312, 736, 1736, 4096, 9664, 22800, 53792, 126912, 299424, 706432, 1666688, 3932224, 9277312, 21888000, 51640448, 121835520, 287447040, 678174976, 1600020992, 3774936064, 8906222080, 21012486144, 49574844416
OFFSET
0,2
FORMULA
G.f.: 1/(1 - 2*x - 2*x^3)
a(n) = 2*a(n-1) +2*a(n-3).
a(n) = Sum_{alpha = RootOf(-1 + 2*z + 2*z^3)} (1/43)*(8 + 9*alpha + 12*alpha^2)*alpha^(-1-n).
a(n) = Sum_{k=0..n} binomial(k, floor((n-k)/2)) * 2^k * (1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 + 2*x^2)/( x*(4*k+4 + 2*x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*2^(n-2*k). - Greg Dresden, Aug 03 2024
MAPLE
spec := [S, {S=Sequence(Union(Prod(Union(Z, Z), Z, Z), Z, Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
seq(coeff(series(1/(1-2*x-2*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 15 2019
MATHEMATICA
LinearRecurrence[{2, 0, 2}, {1, 2, 4}, 30] (* G. C. Greubel, Oct 15 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1/(1-2*x-2*x^3)) \\ G. C. Greubel, Oct 15 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^3) )); // G. C. Greubel, Oct 15 2019
(Sage)
def A052912_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/(1-2*x-2*x^3)).list()
A052912_list(30) # G. C. Greubel, Oct 15 2019
(GAP) a:=[1, 2, 4];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-3]; od; a; # G. C. Greubel, Oct 15 2019
CROSSREFS
Cf. A000930.
Sequence in context: A159328 A190587 A190794 * A024740 A025275 A165409
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved