The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052912 Expansion of 1/(1-2*x-2*x^3). 10
 1, 2, 4, 10, 24, 56, 132, 312, 736, 1736, 4096, 9664, 22800, 53792, 126912, 299424, 706432, 1666688, 3932224, 9277312, 21888000, 51640448, 121835520, 287447040, 678174976, 1600020992, 3774936064, 8906222080, 21012486144, 49574844416 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..29. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 892 Index entries for linear recurrences with constant coefficients, signature (2,0,2). FORMULA G.f.: 1/(1 - 2*x - 2*x^3) a(n) = 2*a(n-1) +2*a(n-3). a(n) = Sum_{alpha = RootOf(-1 + 2*z + 2*z^3)} (1/43)*(8 + 9*alpha + 12*alpha^2)*alpha^(-1-n). a(n) = Sum_{k=0..n} binomial(k, floor((n-k)/2)) * 2^k * (1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006 G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 + 2*x^2)/( x*(4*k+4 + 2*x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013 MAPLE spec := [S, {S=Sequence(Union(Prod(Union(Z, Z), Z, Z), Z, Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20); seq(coeff(series(1/(1-2*x-2*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 15 2019 MATHEMATICA LinearRecurrence[{2, 0, 2}, {1, 2, 4}, 30] (* G. C. Greubel, Oct 15 2019 *) PROG (PARI) my(x='x+O('x^30)); Vec(1/(1-2*x-2*x^3)) \\ G. C. Greubel, Oct 15 2019 (Magma) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^3) )); // G. C. Greubel, Oct 15 2019 (Sage) def A052912_list(prec): P. = PowerSeriesRing(ZZ, prec) return P(1/(1-2*x-2*x^3)).list() A052912_list(30) # G. C. Greubel, Oct 15 2019 (GAP) a:=[1, 2, 4];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-3]; od; a; # G. C. Greubel, Oct 15 2019 CROSSREFS Sequence in context: A159328 A190587 A190794 * A024740 A025275 A165409 Adjacent sequences: A052909 A052910 A052911 * A052913 A052914 A052915 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS More terms from James A. Sellers, Jun 05 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 07:48 EST 2023. Contains 367531 sequences. (Running on oeis4.)