login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052915
Expansion of (1-x)/(1 - x - x^2 - 3*x^3 + 3*x^4).
1
1, 0, 1, 4, 2, 9, 20, 23, 64, 120, 193, 436, 797, 1452, 2978, 5513, 10456, 20547, 38608, 73984, 142865, 271032, 520025, 997700, 1902226, 3646905, 6982156, 13342639, 25558832, 48907224, 93547505, 179103308, 342695989, 655720140, 1255083538
OFFSET
0,4
FORMULA
G.f.: (1-x)/(1 - x - x^2 - 3*x^3 + 3*x^4).
a(n) = a(n-1) + a(n-2) + 3*a(n-3) - 3*a(n-4), with a(0)=1, a(1)=0, a(2)=1, a(3)=4.
a(n) = Sum_{alpha=RootOf(1 - z - z^2 - 3*z^3 + 3*z^4)} (1/2857)*(142 + 885*alpha - 240*alpha^2 - 351*alpha^3)*alpha^(-1-n).
MAPLE
spec := [S, {S=Sequence(Prod(Z, Z, Union(Sequence(Z), Z, Z, Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
seq(coeff(series((1-x)/(1-x-x^2-3*x^3+3*x^4), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 16 2019
MATHEMATICA
LinearRecurrence[{1, 1, 3, -3}, {1, 0, 1, 4}, 40] (* G. C. Greubel, Oct 16 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x)/(1-x-x^2-3*x^3+3*x^4)) \\ G. C. Greubel, Oct 16 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/(1-x-x^2-3*x^3+3*x^4) )); // G. C. Greubel, Oct 16 2019
(Sage)
def A052915_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-x)/(1-x-x^2-3*x^3+3*x^4)).list()
A052915_list(40) # G. C. Greubel, Oct 16 2019
(GAP) a:=[1, 0, 1, 4];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]+3*a[n-3] -3*a[n-4]; od; a; # G. C. Greubel, Oct 16 2019
CROSSREFS
Sequence in context: A298567 A006172 A171631 * A130273 A016516 A349693
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
STATUS
approved