login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052916
Expansion of (1-x)/(1 - x - 2*x^3 + x^4).
1
1, 0, 0, 2, 1, 1, 5, 5, 6, 15, 20, 27, 51, 76, 110, 185, 286, 430, 690, 1077, 1651, 2601, 4065, 6290, 9841, 15370, 23885, 37277, 58176, 90576, 141245, 220320, 343296, 535210, 834605, 1300877, 2028001, 3162001, 4929150, 7684275, 11980276
OFFSET
0,4
FORMULA
G.f.: (1-x)/(1 - x - 2*x^3 + x^4).
a(n) = a(n-1) + 2*a(n-3) - a(n-4), with a(0)=1, a(1)=0, a(2)=0, a(3)=2.
a(n) = Sum_{alpha=RootOf(1-z-2*z^3+z^4)} (1/643)*(-13 + 201*alpha - 38*alpha^2 - 18*alpha^3)*alpha^(-1-n).
MAPLE
spec:=[S, {S=Sequence(Prod(Z, Z, Union(Prod(Sequence(Z), Z), Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
seq(coeff(series((1-x)/(1-x-2*x^3+x^4), x, n+1), x, n), n = 0..50); # G. C. Greubel, Oct 16 2019
MATHEMATICA
LinearRecurrence[{1, 0, 2, -1}, {1, 0, 0, 2}, 50] (* Harvey P. Dale, Apr 21 2011 *)
PROG
(PARI) my(x='x+O('x^50)); Vec((1-x)/(1-x-2*x^3+x^4)) \\ G. C. Greubel, Oct 16 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x-2*x^3+x^4) )); // G. C. Greubel, Oct 16 2019
(Sage)
def A052916_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-x)/(1-x-2*x^3+x^4)).list()
A052916_list(50) # G. C. Greubel, Oct 16 2019
(GAP) a:=[1, 0, 0, 2];; for n in [5..50] do a[n]:=a[n-1]+2*a[n-3]-a[n-4]; od; a; # G. C. Greubel, Oct 16 2019
CROSSREFS
Sequence in context: A156045 A119687 A086856 * A326048 A156576 A293219
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved