login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171631
Triangle read by rows: T(n,k) = n*(binomial(n-2, k-1) + n*binomial(n-2, k)), n > 0 and 0 <= k <= n - 1.
1
1, 4, 2, 9, 12, 3, 16, 36, 24, 4, 25, 80, 90, 40, 5, 36, 150, 240, 180, 60, 6, 49, 252, 525, 560, 315, 84, 7, 64, 392, 1008, 1400, 1120, 504, 112, 8, 81, 576, 1764, 3024, 3150, 2016, 756, 144, 9, 100, 810, 2880, 5880, 7560, 6300, 3360, 1080, 180, 10, 121, 1100
OFFSET
1,2
COMMENTS
If T(0,0) = 0 is prepended, then row sums give A001788.
REFERENCES
Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Publications, 1945, p. 32.
FORMULA
Let p(x;n) = (x + 1)^n. Then row n are the coefficients in the expansion of p''(x;n) - x*p'(x;n) + n*p(x;n) = n*(x + n)*(x + 1)^(n - 2).
From Franck Maminirina Ramaharo, Oct 02 2018: (Start)
T(n,1) = A000290(n).
T(n,2) = A011379(n).
T(n,3) = 3*A002417(n-2).
T(n,n-2) = A046092(n-1).
T(n,n-3) = 9*A000292(n-2).
G.f.: y*(x*y - y - 1)/(x*y + y - 1)^3. (End)
EXAMPLE
Triangle begins:
n\k| 0 1 2 3 4 6 7 8 9
-------------------------------------------------
1 | 1
2 | 4 2
3 | 9 12 3
4 | 16 36 24 4
5 | 25 80 90 40 5
6 | 36 150 240 180 60 6
7 | 49 252 525 560 315 84 7
8 | 64 392 1008 1400 1120 504 112 8
9 | 81 576 1764 3024 3150 2016 756 144 9
... reformatted. - Franck Maminirina Ramaharo, Oct 02 2018
MATHEMATICA
Table[CoefficientList[n*(x + n)*(x + 1)^(n - 2), x], {n, 1, 12}]//Flatten
PROG
(Maxima) T(n, k) := n*(binomial(n - 2, k - 1) + n*binomial(n - 2, k))$
tabl(nn) := for n:1 thru nn do print(makelist(T(n, k), k, 0, n - 1))$ /* Franck Maminirina Ramaharo, Oct 02 2018 */
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Dec 13 2009
EXTENSIONS
Edited and new name by Franck Maminirina Ramaharo, Oct 02 2018
STATUS
approved