login
A127952
Triangle read by rows, T(n,k) = (n+1)*binomial(n-1,k-1).
3
1, 0, 2, 0, 3, 3, 0, 4, 8, 4, 0, 5, 15, 15, 5, 0, 6, 24, 36, 24, 6, 0, 7, 35, 70, 70, 35, 7, 0, 8, 48, 120, 160, 120, 48, 8, 0, 9, 63, 189, 315, 315, 189, 63, 9, 0, 10, 80, 280, 560, 700, 560, 280, 80, 10, 0, 11, 99, 396, 924, 1386, 1386, 924, 396, 99, 11
OFFSET
0,3
COMMENTS
Row sums = A057711, starting (1, 2, 6, 16, 40, 96, ...).
T(2n,n) gives A033876(n-1) for n > 0. - Alois P. Heinz, Sep 04 2014
EXAMPLE
First few rows of the triangle:
1;
0, 2;
0, 3, 3;
0, 4, 8, 4;
0, 5, 15, 15, 5;
0, 6, 24, 36, 24, 6;
0, 7, 35, 70, 70, 35, 7;
...
MAPLE
T := (n, k) -> (n+1)*binomial(n-1, k-1);
seq(print(seq(T(n, k), k= 0..n)), n=0..6); # Peter Luschny, Sep 02 2014
MATHEMATICA
Table[(n+1)*Binomial[n-1, k-1], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 05 2018 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(if(n==0, 1, (n+1)*binomial(n-1, k-1)), ", "))) \\ G. C. Greubel, May 05 2018
(Magma) [[n le 0 select 1 else (n+1)*Binomial(n-1, k-1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 05 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Feb 09 2007
EXTENSIONS
Name corrected after a suggestion of Joerg Arndt by Peter Luschny, Sep 02 2014
STATUS
approved