login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171633 Coefficients of a Hermite-like polynomial from Eulerian polynomials: p(x,n) = Sum_{k=1..n+1} [Eulerian(n + 1, k - 1)*x^(k - 1)]; q(x,n) = p''(x,n) - x*p'(x,n) + n*p(x,n). 0
1, 4, 4, 25, 28, 11, 136, 234, 144, 26, 609, 2040, 1590, 624, 57, 2388, 15096, 19056, 9648, 2412, 120, 8593, 95196, 208893, 148336, 54267, 8628, 247, 29224, 532918, 1961928, 2205850, 1063000, 285786, 29272, 502, 95689, 2739256, 16059128 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Row sums are {1, 8, 64, 540, 4920, 48720, 524160, 6108480, 76809600, 1037836800, 15008716800, 231437606400, ...}.

The important observation here is that the modulo two pattern is the same as the Hermite product A171531 type polynomials.

REFERENCES

Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Book, New York, 1945, page 32.

LINKS

Table of n, a(n) for n=1..39.

FORMULA

p(x,n) = p(x,n) = Sum_{k=1..n+1} [Eulerian(n + 1, k - 1)*x^(k - 1), ];

q(x,n) = p''(x,n) - x*p'(x,n) + n*p(x,n).

EXAMPLE

{1},

{4, 4},

{25, 28, 11},

{136, 234, 144, 26},

{609, 2040, 1590, 624, 57},

{2388, 15096, 19056, 9648, 2412, 120},

{8593, 95196, 208893, 148336, 54267, 8628, 247},

{29224, 532918, 1961928, 2205850, 1063000, 285786, 29272, 502},

{95689, 2739256, 16059128, 28938232, 20207530, 7250696, 1422304, 95752, 1013},

{305284, 13239252, 118078464, 329909376, 350572104, 171167736, 47500128, 6757056, 305364, 2036}

MATHEMATICA

t[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]

p[x_, n_] := Sum[t[n + 1, k - 1]*x^(k - 1), {k, 1, n + 1}]

b = Table[CoefficientList[D[p[x, n], {x, 2}] - x*D[p[x, n], {x, 1}] + n*p[x, n], x], {n, 1, 10}]

Flatten[%]

CROSSREFS

Sequence in context: A269152 A269097 A307552 * A221276 A117429 A132650

Adjacent sequences:  A171630 A171631 A171632 * A171634 A171635 A171636

KEYWORD

nonn,uned,tabl

AUTHOR

Roger L. Bagula, Dec 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 30 12:22 EDT 2020. Contains 338079 sequences. (Running on oeis4.)