login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117429
Semiprime nearest to 5^n. In case of a tie, choose the smaller.
2
4, 4, 25, 123, 626, 3127, 15623, 78123, 390623, 1953122, 9765627, 48828127, 244140623, 1220703121, 6103515629, 30517578127, 152587890617, 762939453119, 3814697265623, 19073486328122, 95367431640623
OFFSET
0,1
LINKS
FORMULA
a(n) = 5^n + A117430(n).
EXAMPLE
a(0) = 4 because 5^0 + 3 = 4 = A001358(1) and no semiprime is closer to 5^0.
a(1) = 4 because 5^1 - 1 = 4 = A001358(1) and no semiprime is closer to 5^1.
a(2) = 25 because 5^2 + 0 = 25 = A001358(9), no semiprime is closer to 5^2.
a(3) = 123 because 5^3 - 2 = 123 = 3 * 41 = A001358(42), no semiprime is closer.
a(4) = 626 because 5^4 + 1 = 626 = 2 * 313, no semiprime is closer.
a(5) = 3127 because 5^5 + 2 = 3127 = 53 * 59, no semiprime is closer.
a(6) = 15623 because 5^6 - 2 = 15623 = 17 * 919, no semiprime is closer.
a(7) = 78123 because 5^7 - 2 = 78123 = 3 * 26041, no semiprime is closer.
a(8) = 390623 because 5^8 - 2 = 390623 = 73 * 5351, no semiprime is closer.
a(9) = 1953122 because 5^9 - 3 = 1953122 = 2 * 976561, no semiprime is closer.
a(10) = 9765627 because 5^10 + 2 = 9765627 = 3 * 3255209, no semiprime closer.
MAPLE
nsp:= proc(n) uses numtheory; local k;
if bigomega(n)=2 then return n fi;
for k from 1 do
if n-k > 0 and bigomega(n-k)=2 then return n-k fi;
if bigomega(n+k)=2 then return n+k fi
od
end proc:
seq(nsp(5^k), k=0..30); # Robert Israel, May 03 2018
MATHEMATICA
sp1[n_]:=Module[{k=0}, While[PrimeOmega[n-k]!=2, k++]; n-k]; sp2[n_]:= Module[ {k=1}, While[ PrimeOmega[n+k]!=2, k++]; n+k]; Join[{4}, Nearest[ {sp1[#], sp2[#]}, #][[1]]&/@(5^Range[20])] (* Harvey P. Dale, Aug 11 2019 *)
CROSSREFS
Cf. A117416 = Semiprime nearest to 3^n, A117405 = Semiprime nearest to 2^n, A117387 = Prime nearest to 2^n.
Sequence in context: A307552 A171633 A221276 * A132650 A112953 A110139
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Mar 14 2006
EXTENSIONS
Edited by Robert Israel, May 03 2018
STATUS
approved