login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171633 Coefficients of a Hermite-like polynomial from Eulerian polynomials: p(x,n) = Sum_{k=1..n+1} [Eulerian(n + 1, k - 1)*x^(k - 1)]; q(x,n) = p''(x,n) - x*p'(x,n) + n*p(x,n). 0

%I

%S 1,4,4,25,28,11,136,234,144,26,609,2040,1590,624,57,2388,15096,19056,

%T 9648,2412,120,8593,95196,208893,148336,54267,8628,247,29224,532918,

%U 1961928,2205850,1063000,285786,29272,502,95689,2739256,16059128

%N Coefficients of a Hermite-like polynomial from Eulerian polynomials: p(x,n) = Sum_{k=1..n+1} [Eulerian(n + 1, k - 1)*x^(k - 1)]; q(x,n) = p''(x,n) - x*p'(x,n) + n*p(x,n).

%C Row sums are {1, 8, 64, 540, 4920, 48720, 524160, 6108480, 76809600, 1037836800, 15008716800, 231437606400, ...}.

%C The important observation here is that the modulo two pattern is the same as the Hermite product A171531 type polynomials.

%D Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Book, New York, 1945, page 32.

%F p(x,n) = p(x,n) = Sum_{k=1..n+1} [Eulerian(n + 1, k - 1)*x^(k - 1), ];

%F q(x,n) = p''(x,n) - x*p'(x,n) + n*p(x,n).

%e {1},

%e {4, 4},

%e {25, 28, 11},

%e {136, 234, 144, 26},

%e {609, 2040, 1590, 624, 57},

%e {2388, 15096, 19056, 9648, 2412, 120},

%e {8593, 95196, 208893, 148336, 54267, 8628, 247},

%e {29224, 532918, 1961928, 2205850, 1063000, 285786, 29272, 502},

%e {95689, 2739256, 16059128, 28938232, 20207530, 7250696, 1422304, 95752, 1013},

%e {305284, 13239252, 118078464, 329909376, 350572104, 171167736, 47500128, 6757056, 305364, 2036}

%t t[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]

%t p[x_, n_] := Sum[t[n + 1, k - 1]*x^(k - 1), {k, 1, n + 1}]

%t b = Table[CoefficientList[D[p[x, n], {x, 2}] - x*D[p[x, n], {x, 1}] + n*p[x, n], x], {n, 1, 10}]

%t Flatten[%]

%K nonn,uned,tabl

%O 1,2

%A _Roger L. Bagula_, Dec 13 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 09:28 EST 2020. Contains 338833 sequences. (Running on oeis4.)