OFFSET
1,1
COMMENTS
Lommel polynomials are rational functions and not polynomials.
LINKS
Eric Weisstein's World of Mathematics, Lommel Polynomial.
EXAMPLE
{2},
{24, 0, 1},
{480, 0, 16},
{13440, 0, 360, 0, 1},
{483840, 0, 10752, 0, 42},
{21288960, 0, 403200, 0, 1728, 0, 1},
{1107025920, 0, 18247680, 0, 79200, 0, 80},
{66421555200, 0, 968647680, 0, 4118400, 0, 5280, 0, 1},
{4516665753600, 0, 59041382400, 0, 242161920, 0, 349440, 0, 130},
{343266597273600, 0, 4064999178240, 0, 15968010240, 0, 24460800, 0, 12600, 0, 1}
MAPLE
L := (n, m, z) -> (GAMMA(n + m)/(GAMMA(n)*(z/2)^m))*hypergeom([(1 - m)/2, -m/2],
[n, -m, 1 - n - m], z^2);
for n from 1 to 10 do L(n, n, 1/z): convert(series(%, z, 12), polynom):
lprint(seq(coeff(expand(%), z, n - k), k = 0 .. n - irem(n, 2))): od:
# Peter Luschny, Jan 29 2024
MATHEMATICA
Lommel[m_, n_, z_] := (Gamma[n + m]/(Gamma[n] ((z/ 2))^m)) HypergeometricPFQ[{((1 - m))/2, (- m)/2}, {n, (-m), 1 - n - m}, z^2]
Table[CoefficientList[Expand[Lommel[n, n, x]*x^n], x], {n, 1, 10}]
Flatten[%]
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Dec 13 2009
STATUS
approved