|
|
A054909
|
|
Number of 8n-dimensional even unimodular lattice (or quadratic forms).
|
|
6
|
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
King shows that a(4) >= 1162109024. - Charles R Greathouse IV, Nov 05 2013
|
|
REFERENCES
|
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.
|
|
LINKS
|
Table of n, a(n) for n=0..3.
Oliver King, A mass formula for unimodular lattices with no roots, Mathematics of Computation 72:242 (2003), pp. 839-863.
Steven R. Finch, Minkowski-Siegel mass constants [Broken link]
Steven R. Finch, Minkowski-Siegel mass constants
|
|
CROSSREFS
|
Cf. A005134, A054907, A054908, A054911.
Sequence in context: A162605 A118812 A228241 * A171636 A270562 A100816
Adjacent sequences: A054906 A054907 A054908 * A054910 A054911 A054912
|
|
KEYWORD
|
nonn,nice,hard
|
|
AUTHOR
|
N. J. A. Sloane, May 23 2000
|
|
EXTENSIONS
|
The classical mass formula shows that the next term is at least 8*10^7.
Oliver King and Richard Borcherds (reb(AT)math.berkeley.edu) have recently improved this estimate and have shown that a(4), the number in dimension 32, is at least 10^9 (Jul 22 2000)
|
|
STATUS
|
approved
|
|
|
|