login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054912
Expansion of e.g.f.: sqrt(exp(5*x)/(2-exp(x))).
1
1, 3, 10, 39, 187, 1128, 8455, 76359, 806032, 9715773, 131479675, 1972203654, 32464248277, 581680548543, 11267985324970, 234636397255299, 5226203231564047, 123980282579987688, 3120721375925421715, 83069463947823034419
OFFSET
0,2
LINKS
P. Peart and W.-J. Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., Vol. 3 (2000), #00.2.1.
FORMULA
E.g.f.: sqrt(exp(5*x)/(2 - exp(x))).
a(n) ~ 4*sqrt(2)*n^n/(exp(n)*(log(2))^(n+1/2)). - Vaclav Kotesovec, Jun 27 2013
MATHEMATICA
CoefficientList[Series[Sqrt[E^(5*x)/(2-E^x)], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Sqrt(Exp(5*x)/(2 - Exp(x))) ))); // G. C. Greubel, Apr 28 2023
(SageMath)
def A054912_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( sqrt(exp(5*x)/(2-exp(x))) ).egf_to_ogf().list()
A054912_list(30) # G. C. Greubel, Apr 28 2023
CROSSREFS
Sequence in context: A351144 A221973 A303004 * A093463 A302989 A276641
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 23 2000
STATUS
approved