login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303004
Expansion of e.g.f. exp(Sum_{k>=1} M(k)*x^k/k!), where M() is the exponential of Mangoldt function (A014963).
0
1, 1, 3, 10, 39, 186, 962, 5587, 35367, 241216, 1771052, 13827925, 114558314, 1001769237, 9208116647, 88737108635, 893505145271, 9379190223746, 102402586369892, 1160487000658679, 13627075242031720, 165524499516422471, 2076762033563394443, 26877177548737581587
OFFSET
0,3
COMMENTS
Exponential transform of A014963.
LINKS
Eric Weisstein's World of Mathematics, Mangoldt Function
N. J. A. Sloane, Transforms
FORMULA
E.g.f.: exp(Sum_{k>=1} A014963(k)*x^k/k!).
EXAMPLE
E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 10*x^3/3! + 39*x^4/4! + 186*x^5/5! + 962*x^6/6! + 5587*x^7/7! + ...
MATHEMATICA
nmax = 23; CoefficientList[Series[Exp[Sum[Exp[MangoldtLambda[k]] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Exp[MangoldtLambda[k]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 17 2018
STATUS
approved