login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054913
Number of labeled connected graphs with n nodes such that complement is also connected.
1
1, 0, 0, 12, 432, 20640, 1635360, 234661728, 63873105408, 33808605100800, 35254518078942720, 72922216118695037952, 300312950395670884227072, 2467417543490126920783534080, 40490542668157619621325008117760, 1327929920886650529112870913410510848
OFFSET
1,4
LINKS
V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
FORMULA
a(n) = 2*A001187(n) - A006125(n).
MAPLE
b:= n-> 2^(n*(n-1)/2):
g:= proc(n) option remember; local k; `if`(n=0, 1,
b(n)- add(k*binomial(n, k) *b(n-k)*g(k), k=1..n-1)/n)
end:
a:= n-> 2*g(n)-b(n):
seq (a(n), n=1..20); # Alois P. Heinz, Oct 21 2012
MATHEMATICA
nn=20; g=Sum[2^Binomial[n, 2]x^n/n!, {n, 0, nn}];
Drop[Range[0, nn]!CoefficientList[Series[2(Log[g]+1)-g, {x, 0, nn}], x], 1] (* Geoffrey Critzer, Oct 21 2012 *)
PROG
(Magma)
m:=30;
f:= func< x | (&+[2^Binomial(n, 2)*x^n/Factorial(n) : n in [0..m+3]]) >;
R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( 1 + 2*Log(f(x)) - f(x) ))); // G. C. Greubel, Apr 28 2023
(SageMath)
m=30
def f(x): return sum(2^binomial(n, 2)*x^n/factorial(n) for n in range(m+4))
def A054913_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( 2 +2*log(f(x)) -f(x) ).egf_to_ogf().list()
a=A054913_list(40); a[1:] # G. C. Greubel, Apr 28 2023
CROSSREFS
Sequence in context: A347795 A129006 A067429 * A221955 A070285 A241593
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 23 2000
EXTENSIONS
More terms from Vladeta Jovovic, Jul 19 2000
STATUS
approved