login
A054911
Number of n-dimensional odd unimodular lattices (or quadratic forms).
8
0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 9, 13, 16, 28, 40, 68, 117, 273, 665, 2566, 17059, 374062
OFFSET
0,10
COMMENTS
a(n) is also the class number of Z^n (the standard lattice with the identity as the basis), as every n-dimensional odd unimodular lattice lies in the same genus as Z^n. - Robin Visser, Jan 24 2025
King gives the lower bounds a(29) >= 37938009 and a(30) >= 20169641025. - Robin Visser, Feb 08 2025
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.
LINKS
Bill Allombert and Gaëtan Chenevier, Unimodular Hunting II, arXiv:2410.19569 [math.NT], 2024.
Gaëtan Chenevier, Unimodular hunting, Cogent Seminar, Jul 05 2021.
Gaëtan Chenevier, Unimodular hunting, Modular Forms Workshop, Oberwolfach online, Feb 2021.
Gaëtan Chenevier, Unimodular Hunting, arXiv:2410.18788 [math.NT], 2024.
Steven R. Finch, Minkowski-Siegel mass constants [Broken link]
Oliver D. King, A mass formula for unimodular lattices with no roots, Math. Comp., 72 (2003), no. 242, 839-863. See Table 3 page 854.
FORMULA
If 8 divides n, then a(n) = A005134(n) - A054909(n/8), otherwise a(n) = A005134(n). - Robin Visser, Jan 24 2025
a(n) >= 2*A241121(n)/A241122(n). - Robin Visser, Feb 08 2025
PROG
(Magma)
function a(n)
if n lt 3 then return Min(1, n); end if;
L := NumberFieldLattice(QNF(), n);
return #GenusRepresentatives(L);
end function; // Robin Visser, Jan 24 2025
CROSSREFS
KEYWORD
nonn,nice,hard,more,changed
AUTHOR
N. J. A. Sloane, May 23 2000
STATUS
approved