login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241122
Type I Minkowski-Siegel mass constants (denominators).
1
2, 8, 48, 384, 3840, 46080, 645120, 10321920, 2786918400, 2229534720, 735746457600, 5885971660800, 765176315904000, 192824431607808000, 385648863215616000, 12340763622899712000, 18881368343036559360000, 15105094674429247488000
OFFSET
1,1
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, Chapter 16.
LINKS
Steven R. Finch, Minkowski-Siegel mass constants, January 9, 2005. [Cached copy, with permission of the author]
MATHEMATICA
a[n_ /; 1 <= n <= 8] = 1/(n!*2^n); a[n_ /; n > 8] := (k = Quotient[n, 2]; r = Mod[n, 8]; Switch[r, 0, (1 - 2^-k)*(1 + 2^(1-k))/(k!*2)*BernoulliB[k]*Product[BernoulliB[j], {j, 2, 2k-2, 2}], 1|7, (2^k+1)/(k!*2^(2k+1))*Product[BernoulliB[j], {j, 2, 2k, 2}], 2|6, 1/((k-1)!*2^(2k+1))*EulerE[k-1]*Product[BernoulliB[j], {j, 2, 2k-2, 2}], 3|5, (2^k-1)/(k!*2^(2k+1))*Product[BernoulliB[j], {j, 2, 2k, 2}], 4, (1-2^-k)*(1-2^(1-k))/(k!*2)*BernoulliB[k]* Product[BernoulliB[j], {j, 2, 2k-2, 2}], _, Print["error n = ", n]; 0] // Abs); Table[a[n] // Denominator, {n, 1, 30}]
CROSSREFS
KEYWORD
nonn,frac,changed
AUTHOR
STATUS
approved