login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137267 Chung-Graham juggling polynomials as a triangular sequence of positive coefficients. 1
1, 1, 1, 2, 2, 2, 3, 3, 4, 6, 4, 4, 6, 12, 24, 5, 5, 8, 18, 48, 120, 6, 6, 10, 24, 72, 240, 720, 7, 7, 12, 30, 96, 360, 1440, 5040, 8, 8, 14, 36, 120, 480, 2160, 10080, 40320, 9, 9, 16, 42, 144, 600, 2880, 15120, 80640, 362880 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Row sums are 1, 2, 6, 16, 50, 204, 1078, 6992, 53226, 462340,.., might be A014144(n)-1 for n>=2.

LINKS

Table of n, a(n) for n=1..55.

Fan Chung, R. L. Graham, Primitive juggling sequences, Am. Math. Monthly 115 (3) (2008) 185-194

FORMULA

f_b(x)=(1 - Sum[(n - k)*k!*x^k, {k, 0, n - 1}])/(1-(b+1)*x) p(x,b)=-f_b(x)*(1-(b+1)*x)=-(1 - Sum[(n - k)*k!*x^k, {k, 0, n - 1}])

EXAMPLE

1;

1, 1;

2, 2, 2;

3, 3, 4, 6;

4, 4, 6, 12, 24;

5, 5, 8, 18, 48, 120;

6, 6, 10, 24, 72, 240, 720;

7, 7, 12, 30, 96, 360, 1440, 5040;

8, 8, 14, 36, 120, 480, 2160, 10080, 40320;

9, 9, 16, 42, 144, 600, 2880, 15120, 80640, 362880;

MATHEMATICA

p[x_, n_] := If[n == 1, 1, -(1 - Sum[(n - k)*k!*x^k, {k, 0, n - 1}])]; a = Table[CoefficientList[p[x, n], x], {n, 1, 10}]; Flatten[a]

CROSSREFS

Cf. A137948.

Sequence in context: A074732 A089046 A054911 * A123576 A094824 A029054

Adjacent sequences:  A137264 A137265 A137266 * A137268 A137269 A137270

KEYWORD

nonn,tabl,uned

AUTHOR

Roger L. Bagula, Mar 12 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 08:15 EDT 2018. Contains 316337 sequences. (Running on oeis4.)