The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137267 Chung-Graham juggling polynomials as a triangular sequence of positive coefficients. 2
 1, 1, 1, 2, 2, 2, 3, 3, 4, 6, 4, 4, 6, 12, 24, 5, 5, 8, 18, 48, 120, 6, 6, 10, 24, 72, 240, 720, 7, 7, 12, 30, 96, 360, 1440, 5040, 8, 8, 14, 36, 120, 480, 2160, 10080, 40320, 9, 9, 16, 42, 144, 600, 2880, 15120, 80640, 362880 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Row sums are {1, 2, 6, 16, 50, 204, 1078, 6992, 53226, 462340,..} which is A014144(n) - 1 for n>=2. Row sums are given by (n+1)* !n - !(n+1), for n>=2, where !n is the left factorial (A003422). - G. C. Greubel, Mar 27 2019 LINKS G. C. Greubel, Rows n=1..100 of triangle, flattened Fan Chung, R. L. Graham, Primitive juggling sequences, Am. Math. Monthly 115 (3) (2008) 185-194 FORMULA Given f_b(x) = (1 - Sum_{k=0..n-1} (n-k)*k!*x^k)/(1-(b+1)*x), then p(x,b) = -f_b(x)*(1-(b+1)*x) = -(1 - Sum_{k=0..n-1} (n-k)*k!*x^k ). EXAMPLE Triangle begins with: 1; 1, 1; 2, 2,  2; 3, 3,  4,  6; 4, 4,  6, 12,  24; 5, 5,  8, 18,  48, 120; 6, 6, 10, 24,  72, 240,  720; 7, 7, 12, 30,  96, 360, 1440,  5040; 8, 8, 14, 36, 120, 480, 2160, 10080, 40320; 9, 9, 16, 42, 144, 600, 2880, 15120, 80640, 362880; MATHEMATICA p[x_, n_]:= If[n == 1, 1, -(1 - Sum[(n-k)*k!*x^k, {k, 0, n-1}])]; Table[CoefficientList[p[x, n], x], {n, 1, 10}]//Flatten CROSSREFS Cf. A137948. Sequence in context: A074732 A089046 A054911 * A123576 A094824 A029054 Adjacent sequences:  A137264 A137265 A137266 * A137268 A137269 A137270 KEYWORD nonn,tabl AUTHOR Roger L. Bagula, Mar 12 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 11:35 EDT 2020. Contains 334771 sequences. (Running on oeis4.)