login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269152
T(n,k) = Number of n X k 0..3 arrays with some element plus some horizontally, antidiagonally or vertically adjacent neighbor totalling three exactly once.
8
0, 4, 4, 24, 80, 24, 108, 768, 768, 108, 432, 6224, 13904, 6224, 432, 1620, 46464, 220968, 220968, 46464, 1620, 5832, 330192, 3277728, 7002040, 3277728, 330192, 5832, 20412, 2270592, 46576336, 208984848, 208984848, 46576336, 2270592, 20412
OFFSET
1,2
COMMENTS
Table starts
......0.........4............24..............108.................432
......4........80...........768.............6224...............46464
.....24.......768.........13904...........220968.............3277728
....108......6224........220968..........7002040...........208984848
....432.....46464.......3277728........208984848.........12637025328
...1620....330192......46576336.......6004186984........738478504448
...5832...2270592.....642676704.....167970539096......42119837369168
..20412..15251152....8680278136....4607603633440....2359047063894464
..69984.100647168..115349343264..124496158984840..130272136732736736
.236196.655139152.1513379596864.3323815506994632.7113223023541150960
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 6*a(n-1) -9*a(n-2)
k=2: a(n) = 12*a(n-1) -38*a(n-2) +12*a(n-3) -a(n-4) for n>5
k=3: [order 8] for n>9
k=4: [order 20] for n>22
k=5: [order 42] for n>45
EXAMPLE
Some solutions for n=3, k=4
..2..2..3..1. .0..2..2..2. .2..0..1..1. .0..3..3..1. .2..2..3..3
..3..2..3..3. .3..3..3..2. .2..0..1..0. .1..1..3..1. .3..3..1..2
..0..2..3..3. .3..2..2..2. .1..0..0..2. .3..3..3..1. .2..3..3..3
CROSSREFS
Column 1 is A120908.
Sequence in context: A269186 A058166 A092897 * A269097 A307552 A171633
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 20 2016
STATUS
approved