login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269186
T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally, diagonally, antidiagonally or vertically adjacent neighbor totalling three exactly once.
8
0, 4, 4, 24, 48, 24, 108, 384, 384, 108, 432, 2736, 5888, 2736, 432, 1620, 18336, 80112, 80112, 18336, 1620, 5832, 118032, 1031344, 2097552, 1031344, 118032, 5832, 20412, 739008, 12791896, 52394312, 52394312, 12791896, 739008, 20412, 69984, 4533744
OFFSET
1,2
COMMENTS
Table starts
......0.........4...........24.............108................432
......4........48..........384............2736..............18336
.....24.......384.........5888...........80112............1031344
....108......2736........80112.........2097552...........52394312
....432.....18336......1031344........52394312.........2563440512
...1620....118032.....12791896......1265974992.......121792778352
...5832....739008....154606864.....29881402560......5665397992608
..20412...4533744...1833130768....693021071760....259306140235672
..69984..27384288..21416076480..15854541802056..11718368891185840
.236196.163381968.247279304248.358760880894864.524154208020159720
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 6*a(n-1) -9*a(n-2)
k=2: a(n) = 10*a(n-1) -21*a(n-2) -20*a(n-3) -4*a(n-4) for n>5
k=3: [order 8] for n>9
k=4: [order 16] for n>17
k=5: [order 40] for n>41
EXAMPLE
Some solutions for n=3 k=4
..3..3..3..2. .2..3..1..3. .1..1..2..0. .2..2..2..3. .3..1..2..3
..1..1..3..1. .2..3..3..2. .0..0..0..0. .0..0..2..0. .1..3..3..3
..3..1..1..1. .3..3..2..2. .1..1..0..2. .2..2..0..0. .3..1..1..3
CROSSREFS
Column 1 is A120908.
Sequence in context: A088304 A131978 A049614 * A058166 A092897 A269152
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 20 2016
STATUS
approved