OFFSET
0,3
COMMENTS
Binomial transform is A092896.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,5,3).
FORMULA
a(n) = (3^n + 4 * 0^n - (-1)^n + 4*n*(-1)^n)/4.
a(n) = a(n-1) + 5*a(n-2) + 3*a(n-3) for n>3. - Colin Barker, Nov 25 2016
E.g.f.: (4 +exp(3*x) -(1+4*x)*exp(-x))/4. - G. C. Greubel, Feb 20 2021
MATHEMATICA
LinearRecurrence[{1, 5, 3}, {1, 0, 4, 4}, 30] (* Harvey P. Dale, Mar 24 2018 *)
PROG
(PARI) Vec((1 - x - x^2 - 3*x^3) / ((1 + x)^2 * (1 - 3*x)) + O(x^30)) \\ Colin Barker, Nov 25 2016
(Sage) [(3^n +4*0^n -(-1)^n*(1-4*n))/4 for n in [0..30]]; # G. C. Greubel, Feb 20 2021
(Magma) [(3^n +4*0^n -(-1)^n*(1-4*n))/4: n in [0..30]]; // G. C. Greubel, Feb 20 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 12 2004
STATUS
approved