login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-x-x^2-3*x^3) / ((1+x)^2*(1-3*x)).
2

%I #18 Feb 21 2021 04:09:21

%S 1,0,4,4,24,56,188,540,1648,4912,14772,44276,132872,398568,1195756,

%T 3587212,10761696,32285024,96855140,290565348,871696120,2615088280,

%U 7845264924,23535794684,70607384144,211822152336,635466457108,1906399371220,5719198113768,17157594341192

%N Expansion of (1-x-x^2-3*x^3) / ((1+x)^2*(1-3*x)).

%C Binomial transform is A092896.

%H Colin Barker, <a href="/A092897/b092897.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,5,3).

%F a(n) = (3^n + 4 * 0^n - (-1)^n + 4*n*(-1)^n)/4.

%F a(n) = a(n-1) + 5*a(n-2) + 3*a(n-3) for n>3. - _Colin Barker_, Nov 25 2016

%F E.g.f.: (4 +exp(3*x) -(1+4*x)*exp(-x))/4. - _G. C. Greubel_, Feb 20 2021

%t LinearRecurrence[{1,5,3},{1,0,4,4},30] (* _Harvey P. Dale_, Mar 24 2018 *)

%o (PARI) Vec((1 - x - x^2 - 3*x^3) / ((1 + x)^2 * (1 - 3*x)) + O(x^30)) \\ _Colin Barker_, Nov 25 2016

%o (Sage) [(3^n +4*0^n -(-1)^n*(1-4*n))/4 for n in [0..30]]; # _G. C. Greubel_, Feb 20 2021

%o (Magma) [(3^n +4*0^n -(-1)^n*(1-4*n))/4: n in [0..30]]; // _G. C. Greubel_, Feb 20 2021

%Y Cf. A092896.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Mar 12 2004