login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349693
Dirichlet convolution of the ruler function (A001511) with itself.
1
1, 4, 2, 10, 2, 8, 2, 20, 3, 8, 2, 20, 2, 8, 4, 35, 2, 12, 2, 20, 4, 8, 2, 40, 3, 8, 4, 20, 2, 16, 2, 56, 4, 8, 4, 30, 2, 8, 4, 40, 2, 16, 2, 20, 6, 8, 2, 70, 3, 12, 4, 20, 2, 16, 4, 40, 4, 8, 2, 40, 2, 8, 6, 84, 4, 16, 2, 20, 4, 16, 2, 60, 2, 8, 6, 20, 4, 16, 2, 70
OFFSET
1,2
LINKS
FORMULA
Dirichlet g.f.: zeta(s)^2 * 4^s / (2^s-1)^2.
a(n) = Sum_{d|n} A001511(d) * A001511(n/d).
a(n) = Sum_{d|n} A000217(A001511(d)).
Multiplicative with a(p^e) = binomial(e+3,3) if p = 2 and e+1 otherwise. - Amiram Eldar, Nov 25 2021
Sum_{k=1..n} a(k) ~ 4*n*(log(n) - 1 + 2*gamma - 2*log(2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Nov 26 2021
MAPLE
a:= n-> (f-> add(f(d)*f(n/d), d=numtheory[
divisors](n)))(k-> padic[ordp](2*k, 2)):
seq(a(n), n=1..80); # Alois P. Heinz, Nov 25 2021
MATHEMATICA
Table[Sum[IntegerExponent[2 d, 2] IntegerExponent[2 n/d, 2], {d, Divisors[n]}], {n, 1, 80}]
f[p_, e_] := If[p == 2, Binomial[e + 3, 3], e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 80] (* Amiram Eldar, Nov 25 2021 *)
PROG
(PARI)
A001511(n) = (1+valuation(n, 2));
A349693(n) = sumdiv(n, d, A001511(n/d)*A001511(d)); \\ Antti Karttunen, Nov 25 2021
(Python)
from sympy import divisor_count
def A349693(n): return divisor_count(n)*(m:=(n&-n).bit_length()+1)*(m+1)//6 # Chai Wah Wu, Jul 13 2022
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Nov 25 2021
STATUS
approved