login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115364
a(n) = A000217(A001511(n)), where A001511 is one more than the 2-adic valuation of n, and A000217(n) is the n-th triangular number, binomial(n+1, 2).
7
1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 15, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 21, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 15, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 28, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 15, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1
OFFSET
1,2
COMMENTS
Row sums of A115363. In general, the row sums of ((1,x) - m(x,x^2))^(-2) are obtained by following the ruler function A001511(n) by the solution of the recurrence a(1)=1, a(n) = n*m^(n-1) + a(n-1), n > 1.
The Stephan formula says this is the Dirichlet convolution of A000012 with A104117. - R. J. Mathar, Feb 07 2011
LINKS
FORMULA
a(n) = binomial(A007814(n)+2, 2) = binomial(A001511(n)+1, 2).
Dirichlet g.f.: zeta(s)*(2^s/(2^s-1))^2. - Ralf Stephan, Jun 17 2007
Multiplicative with a(2^k) = A000217(k+1), a(p^k) = 1 for odd primes p. - Antti Karttunen, Nov 02 2018
O.g.f.: Sum_{k >= 1} k*x^(2^(k-1))/(1 - x^(2^(k-1))). More generally, if f(n) is an arithmetic function and g(n) := Sum_{k = 1..n} f(k), then Sum_{k >= 1} f(k)*x^(2^(k-1))/(1 - x^(2^(k-1))) = Sum_{n >= 1} g(A001511(n))*x^n. This is the case f(n) = n. - Peter Bala, Mar 26 2019
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4. - Amiram Eldar, Oct 22 2022
More precise asymptotics: Sum_{k=1..n} a(k) ~ 4*n - log(n)*(log(n) + 2*log(4*Pi))/(4*log(2)^2). - Vaclav Kotesovec, Jun 25 2024
MATHEMATICA
Array[PolygonalNumber[IntegerExponent[#, 2] + 1] &, 93] (* Michael De Vlieger, Nov 02 2018 *)
PROG
(PARI) A115364(n) = binomial(valuation(n, 2)+2, 2); \\ Antti Karttunen, Nov 02 2018
(Python)
def A115364(n): return (m:=((~n & n-1).bit_length()+1))*(m+1)>>1 # Chai Wah Wu, Jul 02 2022
CROSSREFS
KEYWORD
easy,mult,nonn
AUTHOR
Paul Barry, Jan 21 2006
EXTENSIONS
Formula corrected and the name changed by Antti Karttunen, Nov 02 2018
STATUS
approved