login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115362
Row sums of ((1,x) + (x,x^2))^(-1)*((1,x)-(x,x^2))^(-1) (using Riordan array notation).
9
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3
OFFSET
0,4
COMMENTS
Row sums of the matrix product A115358*A115361.
Generalized Ruler Function for k=4. - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
a(n) is 1 + the 4-adic valuation of n+1. - Joerg Arndt, Oct 07 2015
LINKS
Joseph Rosenbaum, Elementary Problem E319, American Mathematical Monthly, volume 45, number 10, December 1938, pages 694-696. (The A indices in P at equations 1' and 2' for p=4.)
FORMULA
G.f.: Sum_{k>=0} x^(4^k)/(1-x^(4^k)). - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
Dirichlet g.f. (conjectured): zeta(s)/(1-2^(-2s)). - Ralf Stephan, Mar 27 2015
a(n) = (1/3)*(4 + A053737(n) - A053737(n+1)). - Tom Edgar, Oct 06 2015
a(4*n) = a(4*n+1) = a(4*n+2) = 1, a(4*n+3) = 1+a(n), if n >= 0. - Michael Somos, Jul 13 2017
a(n) = 1 + A235127(1+n). - Antti Karttunen, Nov 18 2017, after Joerg Arndt's Oct 07 2015 comment.
MATHEMATICA
a[ n_] := If[ n < 0, 0, 1 + IntegerExponent[n + 1, 4]]; (* Michael Somos, Jul 19 2017 *)
PROG
(Sage) [(1/3)*(4-sum(n.digits(4))+sum((n-1).digits(4))) for n in [1..96]] # Tom Edgar, Oct 06 2015
(PARI) a(n) = 1 + valuation(n+1, 4); \\ Joerg Arndt, Oct 07 2015
(PARI) {a(n) = if( n<0, 0, n%4==3, 1 + a((n - 3) / 4), 1)}; /* Michael Somos, Jul 13 2017 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Jan 21 2006
STATUS
approved